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UNSTEADY CONDITIONS IN A POROUS 
REACTION-DIFFUSION MEDIUM 
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Abstract.  The paper presents a reaction-diffusion model of a flow bioreactor that uses soil 
bacteria Arthrobacter globiformis immobilized in a macroporous gel in order to transform steroids. 
We propose and investigate a set of nonlinear differential equations that describe biochemical 
processes in the presence of diffusion through porous media. Dependence of ordered and chaotic 
formed structures from the manipulated variables of system is investigated. 
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INTRODUCTION 

The article discusses a mathematical model of steroid transformation by 
immobilized-cells of Arthrobacter globiformis in a macroporous gel in the flow 
bioreactor regime. The bioreactor is a fermenter granule, or a biosensor 
bioselective membrane. The model of this process was built in the complete 
concitation regime [4–6, 8]. The characteristics close to experimental characteristics 
were obtained. The articles [3, 13, 14] investigate the metabolic processes of 
Arthrobacter globiformis cells. 

The mathematical model presented in this article also accounts for diffusion 
[1, 2, 7, 9–12]. Autowave regimes were found to influence on a catalysis process. 

THE MATHEMATICAL MODEL OF FLOW BIOREACTOR 

Mathematical modeling of reaction-diffusive media causes the appearance of 
an interesting class of problems for non-linear equations. 

Together with experimentalists, we have previously constructed a model for 
the biotechnological process of steroids transformation, whose calculated values 
met experimental characteristics [4–6, 8]. This process course was studied in different 
conditions. This work studies the formation sequence of different dissipative and 
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chaotic structures appearing in the macroporous gel of bioselective biosensor 
membrane depending on the diffusion ratio change. 

The model is constructed in conformity to a general diagram of biochemical 
process course taking into consideration a diffusive mass transfer of reagents as 
follows [1, 2, 9–12]: 
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where ),1/()( XXXV +=  )1/(1)( )21 ψ+=ψV . 

The equations (1)–(10) determine the change in the concentrations (the 
levels) of: (1) – hydrocortisone (G ), (2) – prednisolone ( P ), (3) – 20β -reduced 

prednisolone ( B ), (4) – NADH  ( N ), (5) – oxidative form of 3-ketosteroid- ∆ - 
dehydrogenase ( 1E ), (6) – reduced form of 3-ketosteroid- ∆ - dehydrogenase, (7) – 

oxidative form of respiratory chain ( Q ), (8) – oxygen ( 2O ), (9) – oxysteroid-

dehydrogenase ( 2E ), (10) – kinetic membrane potential ( ψ ). 

The function )(XV  characterizes the enzyme adsorption in the range of the 

local binding to active complexes. 
)()1( ψV  is the function taking into account the kinetic membrane potential 

effect on the redox reactions of the respiratory chain. 

GD , PD , BD , 
2OD  are the diffusion coefficients of: hydrocortisone, 

prednisolone, 20 β -reduced prednisolone and oxygen. These reagents have the 

diffusion transfer that is taken into account by introducing the partial derivatives 
with respect to x in (1), (2), (3), (8). 

It was accepted a one-dimensional interpretation of an active portion of 
medium ],0[ s . Free diffusion equations are used in border zone: ]0,[ d− , and 

],[ dss + . 

Boundary conditions have been selected, respectively: 

 ( ) ( ) 0x x d x x s dU U=− = +∂ = ∂ = . (11) 

Parameters have been made dimensionless [1, 2, 9–12] and have the 
following form: 

;2.011 === kll  ;27.0102 == ll  6.05 =l  ;5.064 == ll  ;2.17 =l  ;4.29 =l  

;5.116 =k  ;310 =E  ;21 =β  ;03.01 =N  ;5.2=m  ;007.01 =a  ;0068.01 =α  

;2.120 =E  ;01.0=β  ;12 =β  ;03.02 =N  ;02.02 =α  ;019.00 =G  ;23 =N  

;2.02 =γ  ;014.05 =α  ;001.07643 =α=α=α=α  ;015.020 =O  ;1.05 =N  

;003.00 =N  ;14 =N  .7.010 =K  

The nonlinear differential system (1) – (10) is a system with distributed 
parameters. Its solutions are obtained by the finite difference method. The 
nonlinear finite-difference system is solved by the Rynge-Kuta-Merson method. 
An accuracy of solution is 10–12. 
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Using a numerical experiment we have found out a sequence of formation of 
autoperiodical regimes. Depending on the kinetic membrane potential dissipation 
coefficient α  the order and length of period T  change (Table 1), where 

2
0G P b OD D D D D= = = = = . 

When diminishing the dissipation ratio α  from 0.056 to 0.032075, 
periodicity ratio of self-oscillation process is increasing from the 1 to a 14-fold one, 
but then again reaches the 1-fold one with a period length approximately similar to 
the previous condition. Transitions between conditions given in Table 1 take place 
via the appearance of strange attractors regimes. 

Table 1 

Dependence of auto-periodical regimes ratio on value α  

Order of 

period 
α  T  

Order of 

period 
α  T  

Order of 

period 
α  T  

1⋅20 0.056 218 6⋅20 0.0337 1483 11⋅20 0.03247 2346 

2⋅20 0.04 631 7⋅20 0.0334 1579 12⋅20 0.03238 2550 

3⋅20 0.036 847 8⋅20 0.033 1941 13⋅20 0.03227 2743 

4⋅20 0.03563273 1010 9⋅20 0.032865 1991 14⋅20 0.03212 2952 

5⋅20 0.0345 1398 10⋅20 0.03262 2174 1⋅20 0.032075 222 

The difference of one-fold periodic regimes appearing at different α  values 
consists in the fact that at high dissipation ( 056.0=α ) the biosystem lies close to 
the thermodynamic branch and the flow of biochemical process is determined 
through external conditions. At low dissipation ( 32075.0=α ) – the system is self-
organized, and the dissipative structure is established. The activity of a biochemical 
process in this case is determined, as a whole, through internal self-organization of 
a biosystem. 

Assuming as a basis each of the mentioned regimes we have carried out a 
study of the dependence of space-time structures of reagents on the diffusion ratio 
value. We have found scenarios for the formation of both dissipative and chaotic 
structures. One of the scenarios for 8-fold autowave process (8⋅20) appearing at 

0=D  is shown in Table 2. 
The value D  corresponds to values at which bifurcation appears and the 

most interesting conditions are noticed. At any other intermediate values the space-
time structures are changed “smoothly” and they are similar to structures 
corresponding to the nearest lower value D . 
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Table 2 

Scenario for the formation of space-time structures of different conditions depending on diffusion 

ratio D, at 033.0=α , ]24,1[∈x  ( 22=s , 2=d ) and 510[∈t – ]1010 35 +  

D Structure D Structure D Structure 
0.000100 ≈ 8⋅20 0.0048990 St. (8⋅20) St. 0.0083000 Stable 
0.001000 Chaos 8⋅2∞ 0.0050000 St. (1⋅20) St. 0.0085000 Stable 
0.002000 Chaos 8⋅2∞ 0.0055000 St. (8⋅20) St. 0.0087000 Stable 
0.003500 St. (12⋅20) St. 0.0058000 Stable 0.0100000 Stable 
0.003910 St. (1⋅20) St. 0.0059000 Stable 0.0120000 Stable 
0.003930 St. (1⋅20) St. 0.0059500 Stable 0.0200000 Stable 
0.003950 Stable 0.0059700 Stable 0.0300000 Stable 
0.004000 Stable 0.0059800 Stable 0.0440600 Stable 
0.004050 St. (8⋅20) St. 0.0059900 1⋅20–(8⋅20)–1⋅20 0.0441000 Stable 
0.004070 St. (8⋅20) St. 0.0059960 1⋅20–(8⋅20)–1⋅20 0.0500000 Stable 
0.004090 St. (1⋅20) St. 0.0059963 1⋅20–  St. –1⋅20 0.0600000 Stable 
0.004100 Chaos 8⋅2∞ 0.0059965 Stable 0.0630000 Stable 
0.004200 St. (9⋅20) St. 0.0059968 Stable 0.0650000 Stable 
0.004300 8⋅2∞  St.  8⋅2∞ 0.0059970 1⋅20–(8⋅20)–1⋅20 0.0660000 Stable 
0.004400 St.Chaos n⋅2∞St 0.0059973 St. (1⋅23) St. 0.0661000 Stable 
0.004410 St. (8⋅20) St. 0.0059975 1⋅20–(8⋅20)–1⋅20 0.0662000 Chaos n⋅2∞ 

0.004415 St. (1⋅20) St. 0.0059978 Stable 0.0663000 Chaos n⋅2∞ 

0.004420 Stable 0.0059980 St. (1⋅21) St. 0.0665000 Chaos n⋅2∞ 

0.004425 1⋅20 –(9⋅20)–1⋅20 0.0060000 1⋅20 –St. – 1⋅20 0.0666000 Chaos n⋅2∞ 

0.004435 St. (9⋅20) St. 0.0061000 Stable 0.0667000 Chaos n⋅2∞ 
0.004440 Stable 0.0062000 Stable 0.0668000 Unstable Focus 
0.004441 Stable 0.0063000 Stable 0.0669000 Chaos 1⋅2∞ 
0.004442 St. (8⋅20) St. 0.0064000 Stable 0.0670000 Chaos n⋅2∞ 
0.004445 St. (1⋅20) St. 0.0065000 St. (8⋅20) St. 0.0677000 Chaos n⋅2∞ 
0.004450 St. (1⋅20) St. 0.0066000 Stable 0.0680000 Chaos n⋅2∞ 
0.004500 Stable 0.0067000 Stable 0.0685000 8⋅20 

0.004501 St. (1⋅20) St. 0.0068000 St. (8⋅20) St. 0.0690000 Chaos n⋅2∞ 
0.004505 St. (8⋅20) St. 0.0068300 St. (8⋅20) St. 0.0700000 8⋅20 

0.004515 St. (8⋅20) St. 0.0068500 Stable 0.0800000 8⋅20 

0.004518 1⋅20 –St.– 1⋅20 0.0068800 St. (8⋅20) St. 0.1000000 8⋅20 

0.004520 Stable 0.0070000 St. (8⋅20) St. 0.3000000 8⋅20 

0.004530 St. (1⋅20) St. 0.0080000 St. (8⋅20) St. 0.5000000 8⋅20 

0.004600 St. (8⋅20) St. 0.0081000 St. (1⋅20) St.   
0.004850 St. (8⋅20) St. 0.0082000 Stable   

St. is Stable, and defines steady state domain of space-time structures ( , )G x t . 

Fig. 1, a, b, c, d shows examples of space-time structures ),( txG  at various 
D  values. 

The consecutive increase of the diffusion ratio from 0.0001 to 0.5 causes the 
destruction of old and the appearance of new different in type space-time 
structures. After 8-fold quasi-periodical auto-wave structure (≈ 8⋅20) a chaos 
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appears (Chaos 8⋅2∞), then another kind of chaos (Chaos 8⋅2∞), localized in a centre 
12-fold periodicity dissipative structure (St.(12⋅20)St.), etc. until the end of 
scenario. Auto-wave or chaotic structures appeared are localized in one, two or 
three zones separated between them with stabilized states. If a diffusion ratio value 
increased up to 07.0  we shall obtain a space-time periodical structure of 8-fold 
period similar to event 0001.0=D , but its all components at x  owing to a high 
diffusion will oscillate practically synchronously with a very low phase shift. 

One of the most interesting effects occurs when a stabilized space-
unhomogeneous structure following bifurcation will instantly be transferred to 
another kind of space-unhomogeneous stabilized structure (for example, D  from 
0.0058 to 0.00598 and others). 

 

 

 
 
 
 

a  b  

 
c  d 

Fig. 1. Space-time structures ),( txG ; a. quasi-periodical auto-wave structure of 8-fold period, 

0001.0=D , ;[min G  ]maxG  = ;1663.0[  ]5314.0 ; b. chaos, ,001.0=D  ;[min G  ]maxG  = 

;1677.0[  ]5042.0 ; c. localization of dissipative auto-wave structures in 3 zones: 9-fold periodical one 

– in the centre, 1-fold – at edges, ,004425.0=D  ;[min G  ]maxG  = ;1656.0[  ];5185.0  d. chaos, 

,069.0=D  ;[minG  ]maxG  = ;1795.0[  ].3546.0  
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The obtained diversity of space-time structures for reagents of reaction 
diffusive porous medium is defined through structural-functional bonds of a 
biosystem and reflects changes in the kinetics of the biochemical process caused by 
a change of its diffusion ratio value taking place within the period of this process. 

CONCLUSION 

The results reveal the diffusion-dependence of the activity of catalytic 
reactions. In the case in which an autocatalytic process appears, autowave regimes 
can emerge in the bioreactor and that influences the catalysis process. Variable 
areas of different catalytic reactivity form in the granules of fermenter in these 
regimes. The biochemical process activity is not in accord with the measured signal 
in the bioselective membrane of biosensor. The sensitive and insensitive areas of 
measuring are formed. 

The results can be generalized and used in the investigation of catalyst porous 
granules and biosensor bioselective membrane. 
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