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Abstract This paper focuses on Monte Carlo simulationsiofjle-particle diffusion in two-
dimensional (2D) and three-dimensional (3D) mediih wobstacles distributed randomly and,
respective, uniformly. The simulation data show raatus diffusion for short times and normal
diffusion for long times and they suggest thatuh&orm distribution of obstacles facilitates digfon
in comparison to their random distribution. The wlation results also reveal that, for the same
dimensionality of the media, anomalous diffusioaréases, as the average space between obstacles
decreaseand it is always much less anomalous in 3D crowdedia than in 2D ones.
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INTRODUCTION

In many early studies the cytoplasm of mammalidhveas considered as an
agueous solution in which the different types ofenaoles were dissolved and each
type could perform free diffusion in this environmheMore recent studies have
taken into account that the interior of the celtained a high total concentration
of macromolecules and that the cytoplasm was stredton many length scales.
Such media were called crowded [20] and it was detnated both experimentally
and theoretically that the macromolecular crowdiag considerable consequences
on physical and chemical processes, especialheriffusion. The experimental
studies have shown that diffusional mobility of maypes of particles in the
cytoplasm was strongly reduced by comparison whithirtmobility in aqueous
solutions [1, 2, 18, 19]. Computer simulations haiso shown that the diffusion
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process was affected by characteristics of theremwient being anomalous in

obstructed media: the diffusion coefficient has rbeeduced by increasing

concentration of obstacles until complete immohtian occurred beyond the

percolation threshold value for concentration [I6Jyas dependent on the ratio of
tracers mobility versus obstacles mobility [9] ahavas also dependent on sizes
and mobility of both tracers and obstacles [10-16].

Even if the amount of experimental data concertirggdiffusion process in
crowded media constantly increases, there are asippects that cannot be
understood and explained in detail. This understandould be improved by
computer simulations results and it would be beieffor many interdisciplinary
fields such as protein diffusion in concentratedutsan or pharmaceutical
researches concerning drug delivery systems antianesns.

In this study we perform Monte Carlo simulationssofgle-particle diffusion
on two-dimensional (2D) and three-dimensional (38fjices with obstacles in
order to obtain more detailed information aboutiiffesion process in crowded media.

THEORETICAL BACKGROUND: ANOMALOUS DIFFUSION

In free diffusion the mean-square displacementhef diffusing particle,

<r?>, follows the well-known Einstein-Smoluchowski t@a, being proportional
to time,t, and depending on the topological dimensionalityf the medium

<r?> = (2)Dt @)

In this equationD is the well-knowndiffusion coefficient in the limit of
infinitely diluted solutions (Brownian motioheing dependent on the diffusing
particle’s hydrodynamic radius and on the viscositthe medium [14].

In anomalous diffusion the mean-square displaceéinseproportional to a
non-integer power of time

<r?>~t¢ )

where 0 <o < 1 and the exponentis called anomalous diffusion exponent [3]. In
case of anomalous diffusion we may define a nogedlitime dependent diffusion
coefficient

<r?>

D(t) O ~t9t (3)

and if we assume that equation (3) holds fot a0 we obtain
D(t)=rt"* (4)

with T being a constant [17]. Whem =1 we obtairD =T ; it is constant and the
diffusion process is normal.
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METHODOLOGY: SIMULATION ALGORITHM

We have built Fortran 77 programs to implementNuante Carlo routines.
The simulation algorithm for single particle diffas in a crowded medium is
organized as follows:

i) In all simulations the diffusion medium is atle¢ distribution of position
sites. For 2D simulations we use square latticek far 3D simulations we use
cubic lattices, both with periodic boundary corafis. The lattice sizes are
specified for every considered situation.

i) In the lattice we put a single-particle as ga@nd a distribution of
obstacles to mimic a crowded medium. In 2D simatadieach obstacle is &5
site square with truncated corners occupying 2dssitr a X7 site square with
truncated corners occupying 37 sites. In 3D sinmdateach obstacle is a«5x5
cube with truncated corners occupying 81 sites @x@x7 cube with truncated
corners occupying 179 sites. Tracer occupies lesgite in the lattice.

iii) We use different modalities to distribute tbbstacles within the lattice:
randomly and uniformly. In the uniform case thetabkes form a square (2D) or a
cubic (3D) regular lattice with a constant separatietween every pair of nearest-
neighbours. To make the comparison of the resaltahie, the calculations with
random distribution of obstacles and those witifarm distribution should have a
similar density of occupied sitesQ[swes Thus the space between two nearest-
neighbour obstacles in the uniform distribution ahe size of the simulation
lattices must be defined for each case accordirtbembstacle density chosen. In
Figure 1 we illustrate a small region of a 2D tatwhere a single tracer (T) is
present and two obstacles (0), each occupying areqf 5<5 sites with truncated
corners. In this case the obstacles are distributédrmly with 2 spaces between
the parallel obstacles. The situations considerdtis study are presented in Table
1.a for 2D media and in Table 1.b for 3D media.

[0) 0] [0) O O O
o] o 0] 0 [¢] O g Q9 D
o] O 0] [0) 0] O g q ¢
o] o 0] 0 [¢] O g 9 ¢ D
0 (0] 0 O O O
[0) 0] 0 O O O
o] o 0] 0 o| T O g Q9 ¢ D
o] O 0] [0) 0] O g q ¢
o] o 0] 0 o] O g Q9 ¢ D
0 (0] 0 0O O O

Fig. 1. A region of a 2D lattice (2010) illustrating a tracer particle and four obségabccupying
5X5 sites with truncated corners. The obstacles iatelnited uniformly with 2 spaces between two
parallel obstacles.
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Table 1.a

Obstacle sizes, density of sites occupied by olestaand lattice sizes considered in the simulation
of single-particle diffusion in 2D media. In eadise the type of obstacle distribution (random or
uniform, indicating the separation between two astneighbours) is also given

Obstacle sizé Qi Distribution Lattice size
5X5 0.58 random 308300
5X5 0.58 uniform with 1 space 306000
5X5 0.43 random 30% 301
5X5 0.43 uniform with 2 spaces 38801
5X5 0.33 random 304304
5X5 0.33 uniform with 3 spaces 38804
5X5 0.26 random 308 306
5X5 0.26 uniform with 4 spaces 38EB06
X7 0.37 random 308300
X7 0.37 uniform with 3 spaces 38300
7X7 0.31 random 308308
7X7 0.31 uniform with 4 spaces 38808

iv) There is a hard sphere repulsive interactiotwben tracer and obstacles
and between obstacles themselves, so every siteeitattice cannot be occupied
by two particles at the same time.

Table 1.b

Obstacle sizes, density of sites occupied by olestaand lattice sizes considered in the simulation
of single-particle diffusion in 3D media. In eachse the type of obstacle distribution (random or
uniform, indicating the separation between two astneighbours) is also given

Obstacle [Olsites Distribution Lattice size
size
5X5X5 0.38 random 102102 X102
5X5X5 0.38 uniform with 1 space 10102 X102
5X5X5 0.24 random 108 105X 105
5X5X5 0.24 uniform with 2 spaces 183.05X 105
TXTXT 0.35 random 10%104X 104
TXTXT 0.35 uniform with 1 space 104104X 104
TXTX7 0.25 random 98 99X 99
TXTXT 0.25 uniform with 2 spaces FPOX 99

v) A random number is used to choose one of theeseaeighbour sites for
the single-particle to move. For 2D simulations wensider four nearest-
neighbours and for 3D simulations we consider searast-neighbours. The
particle moves only if the selected position is §mp
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vi) We use 100000 time steps in eaimulation and we performed 1000
independent runs. The mean-square displacemediffosing particle is averaged
for these 1000 independent runs.

RESULTS

In both two-dimensional and three dimensional meéiffasion is anomalous
for short times and normal for long times. In ordrillustrate the passage from
anomalous diffusion to normal diffusion, in FiguPewe plot the log <r?>/t)
versuslog () curves for single particle diffusion in a 2D mawh having an
obstacle density of(JJsies = 0.33. The curves for the random and uniform
distribution are compared. In both cases the olestdtave a squared size of5H
sites with truncated corners. In this figure weoalfustrate the manner to
determine the crossover tifrte, from one regime to another: we perform the linear
fit of the region describing anomalous diffusiore¢dending curve) and the linear
fit of the region describing normal diffusion. Thiene corresponding to their
intersection gives us the crossover time.

In Figure 3 we show the plot for single particléfuBion in a 3D medium
having an obstacle density 0O]kw.s= 0.38. The curves for the random and
uniform distribution are compared. In both casesdhstacles have a cubic size of
5x5x5 sites with truncated corners. The irregularite¢stne end of curves in
Figures 2 and 3 are due to statistical noise.

2D, [0O]=0.33, 5x5 with truncated corners
random distribution
————— uniform distribution with 3 spaces

0.0 4

log(®)

Fig. 2. The plot logtr 2>/t) versus log for single particle diffusion in 2D media with ai-
octagonal obstacles*$5 ([O]sies= 0.33) distributed randomly (continuous line) amiformly
(dashed line).
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3D, [0]=0.38, 5x5x5 with truncated corners
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Fig. 3. The plot logtr >>/t) versus logj for single particle diffusion in 3D media with agi-
octagonal obstacles*65 X 5 ([O]ies= 0.38) distributed randomly (continuous line) amiformly
(dashed line).

In Figure 4 we plot the log¢>>/t) versus log) for single particle diffusion
in 2D media with obstacles having a squared siz&>7 sites with truncated
corners, with a density of)fsies= 0.37 and distributed randomly, respectively the
same density of obstacles uniformly distributedFigure 5 we show a similar plot
for a 3D medium having an obstacle density @ff.s= 0.35. The curves for the
random and uniform distribution are compared. Ithbzases the obstacles have a
cubic size of X7x7 sites with truncated corners. The irregularitséshe end of
curves in Figures 4 and 5 are also due to statlstizise.

2D, [O]=0.37, 7x7 with truncated corners
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Fig. 4. The plot logtr /t) versus lodj for single particle diffusion in 2D media withagi-octagonal
obstacles ¥ 7 ([O]sies= 0.37) distributed randomly (continuous line) amniformly (dashed line).
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3D, [0]=0.35, 7x7x7 with truncated corners
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Fig. 5. The plot logtr 2>/t) versus log for single particle diffusion in 3D media with ai-
octagonal obstaclesX77 X 7 ([O]sies= 0.35) distributed randomly (continuous line) amiformly
(dashed line).

From all these figures we notice the crossover framomalous diffusion
regime to normal one. The crossover time strongipethds on the manner the
obstacles are distributed, being considerably hidbe random distribution than
for uniform one. It also depends on the obstaclesties and sizes and on the
topological dimension of the media. The crossoires for all the investigated
cases are presented in Table 2. The transition ftnomalous diffusion at short
times to normal one for long times has been noticedll previously published
results for tracer’s diffusion in 2D obstructed rigef®, 9—15].

We notice that the two lines in every figure haviffedent slopes, the
decreasing in time of the apparent diffusion ca@ffit being stronger for random
distribution of obstacles. It means that for thmesabstacle density the abnormality of
diffusion is higher for the random distribution thior the uniform one.

For a 2D square lattice with punctual obstaclespteolation threshold is
[Olsites= 0.407 [9]. In case of obstacles with higher sibe&sconcept of percolation
limit must be different because for the same dgmdibccupied sites the obstacles
form compact regions and the percolation limit mhset superior of the value
corresponding to punctual obstacles. It is alse for the uniform distribution of
obstacles, because in this situation we cannotheedi percolation limit. This is
illustrated in our paper for single-particle diffis in 2D lattices with
guasi-octagonal obstaclex5 and obstacles densitD]sw.s= 0.43, respectively
[Olsies = 0.58. Both these concentrations are upper the [si@o limit value
corresponding to square lattices with punctual adles, but only for the second
value in the case of random distribution of ob&sale notice that the mean square
displacement has a limiting value (data not shovigo, for this last situation we
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do not notice the crossover from anomalous diffus@normal one, the diffusion
process is anomalous for all the simulation tinee, Bigure 6.

—— [0]=0.43, random distribution
, uniform distribution with 1 space
, random distribution
, uniform distribution with 1 space

<*>H)

0.7

1.0 |

0 1 2 3 4 5
log(t)

Fig. 6. The plot logtr >/t) versus lod] for single particle diffusion in 2D media withagi-octagonal

obstacles %5 with density Q]sies= 0.43 distributed randomly (continuous line) andarmly with 1
space between two parallel obstacles (dashedrespectively with densityd] s.es= 0.58 distributed
randomly (dotted line) and uniformly with 1 spaetvieen two parallel obstacles (dash-dotted line).

In Table 2 we also show the values of anomalodsgidn exponents for all
investigated cases.

Table 2

The anomalous diffusion exponendsand crossover timeg;, for single-particle diffusion in 2D and
3D crowded media

d=2 d=3
Obstacles | [Olses o t* Obstacles| [Olsjes o t*
sizes and (time | sizes and (time
distribution units) | distribution units)
5X5 0.58 | 0.711+0.003 - - - - -
random
5X5 0.58 | 0.958+0.001 10000 - - - -
uniform
5X5 0.43 | 0.901+0.002 2000 - - - -
random
5X5 0.43 | 0.963+0.004 800 - - - -
uniform
5X5 0.33 | 0.946+0.004 1000 5X5X5 0.38 0.984+0.003 400
random random
5X5 0.33 | 0.988+0.003 300 %5X5 0.38 0.994+0.001; 100
uniform uniform
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Table 2 (continued)

5X5 0.26 | 0.963+0.004 800 %5X5 0.24 0.990+0.002 300
random random

5X5 0.26 | 0.991+0.001 200 %5X5 0.24 0.996+0.001; 100
uniform uniform

7X7 0.37 | 0.937+0.00§ 2000 *5X5 0.35 0.982+0.003 400
random random

7X7 0.37 | 0.985+0.005 200 %5X5 0.35 0.991+0.002 100
uniform uniform

7X7 0.31 | 0.953#0.004 2000  *5X5 0.25 0.987+0.002 300
random random

7X7 0.31 | 0.986+0.004 100 %5X5 0.25 0.996+0.002 100
uniform uniform

The anomalous diffusion exponent is determined ftom slope of mean-
square displacements versus time in double logaiihl scale for times
corresponding to anomalous diffusion. These expnene always higher for
uniform distribution than for random distributiowhich means that the uniform
distribution of obstacles facilitates diffusion somparison with their random
distribution, see also Figure 7. These values gtyodepend on obstacles density,
as it increases diffusion, which is much more aroosgand the system behaviour
tends to the trapped diffusion case.

In Table 2 it can also be seen that for an almiostas obstacle density, the
anomalous diffusion is stronger for smaller sizstables (%5 or 5x5x5 with
truncated corners) than for the greater ones7(r 7x7x7 with truncated
corners). In the second case the sites occupidtépbstacles are more grouped
forming a smaller number of particles and leavingater spaces free for diffusion.
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e O uniform distribution
<
0.6 T T T 1
0.2 0.3 0.4 0.5 0.6
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Fig. 7. Anomalous diffusion exponent values fofatiént densities of 85 quasi-octagonal obstacles
distributed randomlys(), respectively uniformly with different spacesveetn two parallel obstacles)(
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For 3D media the anomalous diffusion exponentsaéways higher than for
2D media. The explanation is that the degree ofrginf obstacles in 3D media is
always better than in 2D ones.

DISCUSSIONS AND CONCL USIONS

Transport and binding of molecules to specific ssitge necessaffpr the
assembly and function of ordered supramoleculancsiresin living cells.
Mobility of molecularspecies within the complex environment of mammatiath
is known to deviate notably from mobility in diluselutions. There are also single
molecular events inside living cells (e.g., signmhnsduction and gene
transcription) and detailed knowledge about theingport could improve our
understanding of basic cellular processes as welingroving our knowledge on
the intracellular transport of therapeutic agefitse technique of single molecule
tracking can besed to probe the dynamics of intracelluecromolecules, but the
trajectories of single-particles obtained from themsxperiments are not truly
understood [5, 16].

In order to better understand the diffusion prodesssmall molecules in
living cells we have performed simulations conaegnsingle-particle diffusion in
2D and 3D crowded media. In our approach we havesidered only spatially
obstructed motion without other types of interawticuch hydrodynamics, binding
or reactions. Our approach is based on the expetaheesults obtained by Kao
and co-workers [7] and Wachsmuth and co-worker$ {ifdch have shown that
probe collisionsvith intracellular components was determined tatze principal
diffusive barrier that slowetthe translational diffusion of small solutes.

Our simulation data reveal anomalous diffusiondorall times and normal
diffusion for long times in both 2D and 3D obstetttmedia. These results are in
good agreement with other simulation data [6, 9-d] also with experimental
data. Wachsmutland co-workers [18] have measured the effectivéusiidn
constants and transperlocities of polyplexes in the cytoplasm to untkand how
they are intracellularly transported. For shotérvals, the motion of the polyplex
was highly correlated arithad a pronounced memory effect. For lorigeervals,
the memory effect was lost, and the motions coeldiéscribed as a pure random
walk. Similar findings concerning two temporagimes of intracellular motion
have also been reported for um beadsing in the cytoplasm and chromosome
motion in the nucleus [8].

The crossover time from one regime to another dépaem the following
factors: the manner to distribute the obstaclbestaxle density, obstacle size and
the topological dimension of the media. The crossotime decreases with
decreasing density of obstacles and increasing sizebstacles. This behaviour is
strongly correlated to that of an anomalous diffnsexponent, which increases
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with decreasing density and increasing sizes oftaghss. As the density of

obstructed sites in the lattice is smaller, théudibn is easier to occur, its degree
of abnormality being smaller, and also the crossdivee is smaller. The same

behaviour of particles diffusion in 2D crowded needvas also noticed in other
simulations [6, 10, 11] and we have shown herestitee qualitative behaviour for

3D media.

For the same density of occupied sites but obstaglth bigger sizes, the
mean distance between two obstacles is higher lsodttee mean displacement of
diffusing particle between two consecutive obswmeehigher. This is true for both
2D and 3D media and it illustrates that small otisaare more efficient barriers
for diffusion than bigger ones. This result waaisported for other simulations
of diffusion in 2D crowded media [6, 10, 11].

For the same dimensionality of the media and tmeesdensity of occupied
sites in the lattice, the crossover time is alwslysrter for uniform distribution of
obstacles than for their random distribution. Thraalous diffusion exponent
also increases for uniform distribution of obstadle comparison to their random
distribution. These observations allow us to codelthat the uniform distribution
of the obstacles facilitates single-particle diffusin comparison to their random
distribution. This observation could be relatedwgtructural organization of living
cells. In case of uniformly distributed obstaclesre are “channels” in the lattice
where all the vacancies are connected by a contspath. When tracer enters in
such a channel, its diffusion is obstructed onlythy “walls” and the diffusing
distance is higher than in case of randomly digtad obstacles. As the channel is
larger, the area of connected vacancies is highe:tree diffusion is easier to occur.
For the diffusion process in 2D obstructed mediacamsider the transport of small
particles through membranes and for 3D media weiden the diffusion process
through microtubules in the cytoplasm. Membranegan channels that facilitate
small particle diffusion and the diameters of cheanare very important for
membrane permeability for any type of particle. tAs diameter of the channel is
larger, there are fewer collisions with its walledathe diffusion rate is higher, the
same considerations being also applicable to diffuthrough microtubules.

Our simulation data also show much less anomaléfisin in 3D crowded
media than in 2D ones for all the investigated saskhis result is in good
agreement with theoretical predictions, which shaven for homogeneous
environment, a recurrent diffusion (the probabifity diffusing particle to revisit
one of its old positions is very high) for mediahwvsmall topological dimensions
(d < 2) and non-recurrent diffusion (the probability fiiffusing particle to revisit
one of its old positions is very small) for 3D med#4]. It is also related to the
degree of mixing in the system. 2D media never rasauperfect mixing, but 3D
media always assure a higher degree of mixing 2lZannes.
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