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Abstract. This paper focuses on Monte Carlo simulations of single-particle diffusion in two-
dimensional (2D) and three-dimensional (3D) media with obstacles distributed randomly and, 
respective, uniformly. The simulation data show anomalous diffusion for short times and normal 
diffusion for long times and they suggest that the uniform distribution of obstacles facilitates diffusion 
in comparison to their random distribution. The simulation results also reveal that, for the same 
dimensionality of the media, anomalous diffusion increases, as the average space between obstacles 
decreases and it is always much less anomalous in 3D crowded media than in 2D ones.  
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INTRODUCTION 

In many early studies the cytoplasm of mammalian cell was considered as an 
aqueous solution in which the different types of molecules were dissolved and each 
type could perform free diffusion in this environment. More recent studies have 
taken into account that the interior of the cell contained a high total concentration 
of macromolecules and that the cytoplasm was structured on many length scales. 
Such media were called crowded [20] and it was demonstrated both experimentally 
and theoretically that the macromolecular crowding had considerable consequences 
on physical and chemical processes, especially on the diffusion. The experimental 
studies have shown that diffusional mobility of many types of particles in the 
cytoplasm was strongly reduced by comparison with their mobility in aqueous 
solutions [1, 2, 18, 19]. Computer simulations have also shown that the diffusion 
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process was affected by characteristics of the environment being anomalous in 
obstructed media: the diffusion coefficient has been reduced by increasing 
concentration of obstacles until complete immobilization occurred beyond the 
percolation threshold value for concentration [16], it was dependent on the ratio of 
tracers mobility versus obstacles mobility [9] and it was also dependent on sizes 
and mobility of both tracers and obstacles [10–16].  

Even if the amount of experimental data concerning the diffusion process in 
crowded media constantly increases, there are still aspects that cannot be 
understood and explained in detail. This understanding could be improved by 
computer simulations results and it would be beneficial for many interdisciplinary 
fields such as protein diffusion in concentrated solution or pharmaceutical 
researches concerning drug delivery systems and mechanisms.  

In this study we perform Monte Carlo simulations of single-particle diffusion 
on two-dimensional (2D) and three-dimensional (3D) lattices with obstacles in 
order to obtain more detailed information about the diffusion process in crowded media.   

THEORETICAL BACKGROUND: ANOMALOUS DIFFUSION 

In free diffusion the mean-square displacement of the diffusing particle, 
2r< > , follows the well-known Einstein-Smoluchowski relation, being proportional 

to time, t,  and depending on the topological dimensionality, d, of the medium 

 ( )2   2r d Dt< > =  (1) 

In this equation, D is the well-known diffusion coefficient in the limit of 
infinitely diluted solutions (Brownian motion) being dependent on the diffusing 
particle’s hydrodynamic radius and on the viscosity of the medium [14]. 

 In anomalous diffusion the mean-square displacement is proportional to a 
non-integer power of time  

 2 ~r t α< >  (2) 

where 0 < α < 1 and the exponent α is called anomalous diffusion exponent [3]. In 
case of anomalous diffusion we may define a normalised, time dependent diffusion 
coefficient  
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and if we assume that equation (3) holds for all t >0 we obtain  

 1( )D t tα−= Γ  (4) 

with Γ being a constant [17]. When 1α =  we obtainD = Γ ; it is constant and the 
diffusion process is normal.  
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METHODOLOGY: SIMULATION ALGORITHM 

We have built Fortran 77 programs to implement the Monte Carlo routines. 
The simulation algorithm for single particle diffusion in a crowded medium is 
organized as follows:  

i) In all simulations the diffusion medium is a lattice distribution of position 
sites.  For 2D simulations we use square lattices and for 3D simulations we use 
cubic lattices, both with periodic boundary conditions. The lattice sizes are 
specified for every considered situation. 

ii) In the lattice we put a single-particle as tracer and a distribution of 
obstacles to mimic a crowded medium. In 2D simulations each obstacle is a 5×5 
site square with truncated corners occupying 21 sites or a 7×7 site square with 
truncated corners occupying 37 sites. In 3D simulations each obstacle is a 5×5×5 
cube with truncated corners occupying 81 sites or a 7×7×7 cube with truncated 
corners occupying 179 sites. Tracer occupies 1 single site in the lattice.  

iii) We use different modalities to distribute the obstacles within the lattice: 
randomly and uniformly. In the uniform case the obstacles form a square (2D) or a 
cubic (3D) regular lattice with a constant separation between every pair of nearest-
neighbours. To make the comparison of the results reliable, the calculations with 
random distribution of obstacles and those with uniform distribution should have a 
similar density of occupied sites, [O]sites. Thus the space between two nearest-
neighbour obstacles in the uniform distribution and the size of the simulation 
lattices must be defined for each case according to the obstacle density chosen. In 
Figure 1 we illustrate a small region of a 2D lattice where a single tracer (T) is 
present and two obstacles (o), each occupying a square of 5×5 sites with truncated 
corners. In this case the obstacles are distributed uniformly with 2 spaces between 
the parallel obstacles. The situations considered in this study are presented in Table 
1.a for 2D media and in Table 1.b for 3D media. 
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Fig. 1. A region of a 2D lattice  (10×10) illustrating a tracer particle and four obstacles occupying 
5×5 sites with truncated corners. The obstacles are distributed uniformly with 2 spaces between two 

parallel obstacles. 
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Table 1.a 

Obstacle sizes, density of sites occupied by obstacles, and lattice sizes considered in the simulations 
of single-particle diffusion in 2D media. In each case the type of obstacle distribution (random or 

uniform, indicating the separation between two nearest-neighbours) is also given 

Obstacle size [O]sites Distribution Lattice size 
5×5 0.58 random 300×300 
5×5 0.58 uniform with 1 space 300×300 
5×5 0.43 random 301×301 
5×5 0.43 uniform with 2 spaces 301×301 
5×5 0.33 random 304×304 
5×5 0.33 uniform with 3 spaces 304×304 
5×5 0.26 random 306×306 
5×5 0.26 uniform with 4 spaces 306×306 
7×7 0.37  random 300×300 
7×7 0.37  uniform with 3 spaces 300×300 
7×7 0.31 random 308×308 
7×7 0.31 uniform with 4 spaces 308×308 

 
iv) There is a hard sphere repulsive interaction between tracer and obstacles 

and between obstacles themselves, so every site in the lattice cannot be occupied 
by two particles at the same time.  

Table 1.b 

Obstacle sizes, density of sites occupied by obstacles, and lattice sizes considered in the simulations 
of single-particle diffusion in 3D media. In each case the type of obstacle distribution (random or 

uniform, indicating the separation between two nearest-neighbours) is also given 

Obstacle 
size 

[O]sites Distribution Lattice size 

5×5×5 0.38 random 102×102 ×102 

5×5×5 0.38 uniform with 1 space 102×102 ×102 

5×5×5 0.24 random 105×105× 105 

5×5×5 0.24 uniform with 2 spaces 105×105× 105 

7×7×7 0.35 random 104×104× 104 

7×7×7 0.35 uniform with 1 space 104×104× 104 

7×7×7 0.25 random 99×99× 99 

7×7×7 0.25 uniform with 2 spaces 99×99× 99 

 
v) A random number is used to choose one of the nearest-neighbour sites for 

the single-particle to move. For 2D simulations we consider four nearest-
neighbours and for 3D simulations we consider six nearest-neighbours. The 
particle moves only if the selected position is empty. 
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vi) We use 100000 time steps in each simulation and we performed 1000 
independent runs. The mean-square displacement for diffusing particle is averaged 
for these 1000 independent runs. 

RESULTS 

In both two-dimensional and three dimensional media diffusion is anomalous 
for short times and normal for long times. In order to illustrate the passage from 
anomalous diffusion to normal diffusion, in Figure 2 we plot the log (<r 2>/t) 
versus log (t) curves for single particle diffusion in a 2D medium having an 
obstacle density of [O]sites =  0.33. The curves for the random and uniform 
distribution are compared. In both cases the obstacles have a squared size of 5×5 
sites with truncated corners. In this figure we also illustrate the manner to 
determine the crossover time, t* , from one regime to another: we perform the linear 
fit of the region describing anomalous diffusion (descending curve) and the linear 
fit of the region describing normal diffusion. The time corresponding to their 
intersection gives us the crossover time.  

In Figure 3 we show the plot for single particle diffusion in a 3D medium 
having an obstacle density of [O]sites = 0.38. The curves for the random and 
uniform distribution are compared. In both cases the obstacles have a cubic size of 
5×5×5 sites with truncated corners. The irregularities at the end of curves in 
Figures 2 and 3 are due to statistical noise.  
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Fig. 2. The plot log(<r 2>/t) versus log(t) for single particle diffusion in 2D media with quasi-
octagonal obstacles 5×5 ([O]sites = 0.33) distributed randomly (continuous line) and uniformly 

(dashed line). 
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Fig. 3. The plot log(<r 2>/t) versus log(t) for single particle diffusion in 3D media with quasi-

octagonal obstacles 5× 5×5 ([O]sites = 0.38) distributed randomly (continuous line) and uniformly 
(dashed line). 

In Figure 4 we plot the log(<r 2>/t) versus log(t) for single particle diffusion 
in 2D media with obstacles having a squared size of 7×7 sites with truncated 
corners, with a density of [O]sites = 0.37 and distributed randomly, respectively the 
same density of obstacles uniformly distributed. In Figure 5 we show a similar plot 
for a 3D medium having an obstacle density of [O]sites = 0.35. The curves for the 
random and uniform distribution are compared. In both cases the obstacles have a 
cubic size of 7×7×7 sites with truncated corners. The irregularities at the end of 
curves in Figures 4 and 5 are also due to statistical noise. 
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Fig. 4. The plot log(<r 2>/t) versus log(t) for single particle diffusion in 2D media with quasi-octagonal 
obstacles 7×7 ([O]sites = 0.37) distributed randomly (continuous line) and uniformly (dashed line). 
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Fig. 5. The plot log(<r 2>/t) versus log(t) for single particle diffusion in 3D media with quasi-

octagonal obstacles 7× 7×7 ([O]sites = 0.35) distributed randomly (continuous line) and uniformly 
(dashed line). 

From all these figures we notice the crossover from anomalous diffusion 
regime to normal one. The crossover time strongly depends on the manner the 
obstacles are distributed, being considerably higher for random distribution than 
for uniform one. It also depends on the obstacle densities and sizes and on the 
topological dimension of the media. The crossover times for all the investigated 
cases are presented in Table 2. The transition from anomalous diffusion at short 
times to normal one for long times has been noticed in all previously published 
results for tracer’s diffusion in 2D obstructed media [6, 9–15].  

We notice that the two lines in every figure have different slopes, the 
decreasing in time of the apparent diffusion coefficient being stronger for random 
distribution of obstacles. It means that for the same obstacle density the abnormality of 
diffusion is higher for the random distribution than for the uniform one.  

For a 2D square lattice with punctual obstacles the percolation threshold is 
[O]sites = 0.407 [9]. In case of obstacles with higher sizes the concept of percolation 
limit must be different because for the same density of occupied sites the obstacles 
form compact regions and the percolation limit must be superior of the value 
corresponding to punctual obstacles. It is also true for the uniform distribution of 
obstacles, because in this situation we cannot define a percolation limit. This is 
illustrated in our paper for single-particle diffusion in 2D lattices with  
quasi-octagonal obstacles 5×5 and obstacles density [O]sites = 0.43, respectively 
[O]sites = 0.58. Both these concentrations are upper the percolation limit value 
corresponding to square lattices with punctual obstacles, but only for the second 
value in the case of random distribution of obstacles we notice that the mean square 
displacement has a limiting value (data not shown). Also, for this last situation we 
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do not notice the crossover from anomalous diffusion to normal one, the diffusion 
process is anomalous for all the simulation time, see Figure 6.  
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Fig. 6. The plot log(<r 2>/t) versus log(t) for single particle diffusion in 2D media with quasi-octagonal 
obstacles 5×5  with density [O]sites = 0.43 distributed randomly (continuous line) and uniformly with 1 
space between two parallel obstacles (dashed line), respectively with density [O]sites = 0.58 distributed 
randomly (dotted line) and uniformly with 1 space between two parallel obstacles (dash-dotted line). 

In Table 2 we also show the values of anomalous diffusion exponents for all 
investigated cases. 

Table 2 

The anomalous diffusion exponents, α, and crossover times, t*, for single-particle diffusion in 2D and 
3D crowded media 

d = 2 d = 3 
Obstacles 
sizes and 

distribution 

[O]sites α t* 
(time 
units) 

Obstacles 
sizes and 

distribution 

[O]sites α t* 
(time 
units) 

5×5 
random 

0.58 0.711±0.003 – – – – – 

5×5 
uniform 

0.58 0.958±0.001 10000 – – – – 

5×5 
random 

0.43 0.901±0.002 2000 – – – – 

5×5 
uniform 

0.43 0.963±0.004 800 – – – – 

5×5 
random 

0.33 0.946±0.004 1000 5× 5×5 
random 

0.38 0.984±0.003 400 

5×5 
uniform 

0.33 0.988±0.003 300 5× 5×5 
uniform 

0.38 0.994±0.001 100 
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Table 2 (continued) 

5×5 
random 

0.26 0.963±0.004 800 5× 5×5 
random 

0.24 0.990±0.002 300 

5×5 
uniform 

0.26 0.991±0.001 200 5× 5×5 
uniform 

0.24 0.996±0.001 100 

7×7 
random 

0.37  0.937±0.005 2000 5× 5×5 
random 

0.35 0.982±0.003 400 

7×7 
uniform 

0.37  0.985±0.005 200 5× 5×5 
uniform 

0.35 0.991±0.002 100 

7×7 
random 

0.31 0.953±0.004 2000 5× 5×5 
random 

0.25 0.987±0.002 300 

7×7 
uniform 

0.31 0.986±0.004 100 5× 5×5 
uniform 

0.25 0.996±0.002 100 

 
The anomalous diffusion exponent is determined from the slope of mean-

square displacements versus time in double logarithmical scale for times 
corresponding to anomalous diffusion. These exponents are always higher for 
uniform distribution than for random distribution, which means that the uniform 
distribution of obstacles facilitates diffusion in comparison with their random 
distribution, see also Figure 7. These values strongly depend on obstacles density, 
as it increases diffusion, which is much more anomalous and the system behaviour 
tends to the trapped diffusion case.  

In Table 2 it can also be seen that for an almost similar obstacle density, the 
anomalous diffusion is stronger for smaller size obstacles (5×5 or 5×5×5 with 
truncated corners) than for the greater ones (7×7 or 7×7×7 with truncated 
corners). In the second case the sites occupied by the obstacles are more grouped 
forming a smaller number of particles and leaving greater spaces free for diffusion. 
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Fig. 7. Anomalous diffusion exponent values for different densities of 5×5 quasi-octagonal obstacles 
distributed randomly (■), respectively uniformly with different spaces between two parallel obstacles (○). 
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For 3D media the anomalous diffusion exponents are always higher than for 
2D media. The explanation is that the degree of mixing of obstacles in 3D media is 
always better than in 2D ones.   

DISCUSSIONS AND CONCLUSIONS 

Transport and binding of molecules to specific sites are necessary for the 
assembly and function of ordered supramolecular structures in living cells. 
Mobility of molecular species within the complex environment of mammalian cell 
is known to deviate notably from mobility in dilute solutions. There are also single 
molecular events inside living cells (e.g., signal transduction and gene 
transcription) and detailed knowledge about their transport could improve our 
understanding of basic cellular processes as well as improving our knowledge on 
the intracellular transport of therapeutic agents. The technique of single molecule 
tracking can be used to probe the dynamics of intracellular macromolecules, but the 
trajectories of single-particles obtained from these experiments are not truly 
understood [5, 16].   

In order to better understand the diffusion process for small molecules in 
living cells we have performed simulations concerning single-particle diffusion in 
2D and 3D crowded media. In our approach we have considered only spatially 
obstructed motion without other types of interactions such hydrodynamics, binding 
or reactions. Our approach is based on the experimental results obtained by Kao 
and co-workers [7] and Wachsmuth and co-workers [18] which have shown that 
probe collisions with intracellular components was determined to be the principal 
diffusive barrier that slowed the translational diffusion of small solutes.  

 Our simulation data reveal anomalous diffusion for small times and normal 
diffusion for long times in both 2D and 3D obstructed media. These results are in 
good agreement with other simulation data [6, 9–15] and also with experimental 
data. Wachsmuth and co-workers [18] have measured the effective diffusion 
constants and transport velocities of polyplexes in the cytoplasm to understand how 
they are intracellularly transported. For short intervals, the motion of the polyplex 
was highly correlated and it had a pronounced memory effect. For longer intervals, 
the memory effect was lost, and the motions could be described as a pure random 
walk.  Similar findings concerning two temporal regimes of intracellular motion 
have also been reported for µm beads moving in the cytoplasm and chromosome 
motion in the nucleus [8].   

The crossover time from one regime to another depends on the following 
factors:  the manner to distribute the obstacles, obstacle density, obstacle size and 
the topological dimension of the media. The crossover time decreases with 
decreasing density of obstacles and increasing sizes of obstacles. This behaviour is 
strongly correlated to that of an anomalous diffusion exponent, which increases 
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with decreasing density and increasing sizes of obstacles. As the density of 
obstructed sites in the lattice is smaller, the diffusion is easier to occur, its degree 
of abnormality being smaller, and also the crossover time is smaller. The same 
behaviour of particles diffusion in 2D crowded media was also noticed in other 
simulations [6, 10, 11] and we have shown here the same qualitative behaviour for 
3D media.  

For the same density of occupied sites but obstacles with bigger sizes, the 
mean distance between two obstacles is higher and also the mean displacement of 
diffusing particle between two consecutive obstacles is higher. This is true for both 
2D and 3D media and it illustrates that small obstacles are more efficient barriers 
for diffusion than bigger ones. This result was also reported for other simulations 
of diffusion in 2D crowded media [6, 10, 11].  

For the same dimensionality of the media and the same density of occupied 
sites in the lattice, the crossover time is always shorter for uniform distribution of 
obstacles than for their random distribution. The anomalous diffusion exponent 
also increases for uniform distribution of obstacles in comparison to their random 
distribution.  These observations allow us to conclude that the uniform distribution 
of the obstacles facilitates single-particle diffusion in comparison to their random 
distribution. This observation could be related with structural organization of living 
cells. In case of uniformly distributed obstacles there are “channels” in the lattice 
where all the vacancies are connected by a continuous path.  When tracer enters in 
such a channel, its diffusion is obstructed only by the “walls” and the diffusing 
distance is higher than in case of randomly distributed obstacles. As the channel is 
larger, the area of connected vacancies is higher and the diffusion is easier to occur. 
For the diffusion process in 2D obstructed media we consider the transport of small 
particles through membranes and for 3D media we consider the diffusion process 
through microtubules in the cytoplasm. Membranes contain channels that facilitate 
small particle diffusion and the diameters of channels are very important for 
membrane permeability for any type of particle.  As the diameter of the channel is 
larger, there are fewer collisions with its walls and the diffusion rate is higher, the 
same considerations being also applicable to diffusion through microtubules.  

Our simulation data also show much less anomalous diffusion in 3D crowded 
media than in 2D ones for all the investigated cases. This result is in good 
agreement with theoretical predictions, which show, even for homogeneous 
environment, a recurrent diffusion (the probability for diffusing particle to revisit 
one of its old positions is very high) for media with small topological dimensions 
( 2≤d ) and non-recurrent diffusion (the probability for diffusing particle to revisit 
one of its old positions is very small) for 3D media [4]. It is also related to the 
degree of mixing in the system. 2D media never assure a perfect mixing, but 3D 
media always assure a higher degree of mixing than 2D ones.  
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