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Abstract. In this paper we describe only the first part of the duty cycle of a pulsatory liposome. 
A unilamellar lipid liposome filled with an aqueous solution of an impermeant solute is introduced 
into a hypotonic aqueous environment. Because of the mechanical tension induced by an osmotic 
flow, the vesicle swells up to a critical size, when suddenly a transbilayer pore appears. A part of the 
intracellular material leaks out through this pore, and the liposome membrane relaxes and finally 
recovers. The swelling begins again and the liposome experiences a periodical process. For this 
reason we have named it a pulsatory liposome. In this paper we have obtained the differential 
equation of the swelling stage. Its analytical solution is the dependence of time on vesicle radius, 
which is the inverse of the direct function that would be of interest. We have also computed several 
parameters related to the swelling process: the critical swelling time and the duration of the last cycle 
of vesicle activity for some initial concentrations of solute. 
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INTRODUCTION 

The passage of molecules, especially of large ones, through cellular 
membranes is a very important problem for certain biotechnology applications. 
Formation of a pore in lipid bilayers following some controlled processes may be 
an adequate and interesting way of transmembrane transport.  
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Some pores, named stochastic pores, can appear due to structural and 
dynamic properties of lipid bilayers [3–7, 9], but others may be favored by 
mechanical tension induced in different ways [11, 12]. Recently, a sequence of 30–
40 pores was observed in the same giant vesicle, a pore at a time, which can appear 
in vesicles stretched by optically induced mechanical tension [1, 2, 12].  

There are two very interesting biotechnology applications which require an 
increase in membrane permeability: gene therapy and targeted delivery of special 
compounds. In the first one, the transport of DNA fragments through cellular and 
nuclear membranes is requested [13]. The second application uses special 
molecules encapsulated in vesicles, which have to be transported to a specified 
target location [14]. Having reached that point, one supposes that the liposome 
discharges its content in the external medium by its breakdown. 

In our last two papers we have considered how a lipid vesicle has to release 
the drug molecules in a well-controlled fashion [11, 15]. It must work as a 
pulsatory liposome, the energy of which is supplied by the concentration gradient 
across membrane of an impermeant solute. In this series of three papers, we will 
perform a detailed analysis of the most important stages of a cycle in the evolution 
of a pulsatory liposome. 

In the present paper we are studying the swelling of a lipid vesicle subjected 
to osmotic stress. Pore opening at the end of the swelling stage as an essential event 
for the pulsatory liposome functioning will be analyzed in the second paper. All the 
processes which contribute to the vesicle relaxing are described by three 
differential equations in the third and last paper of the series. 

We have named such a liposome a pulsatory liposome, since it performs a 
cyclic activity. We will demonstrate that these liposomes may be programmed to 
work a certain number of cycles, settled in advance. Also, we will calculate the 
amount of special substances delivered during each cycle. 

MATERIALS AND METHODS 

PHENOMENOLOGICAL BASES OF A PULSATORY LIPOSOME 

Let us consider a liposome filled with aqueous solution containing an 
impermeant solute. The initial state of the liposome is an equilibrium one and is 
characterized by smooth and unstretched lipid membrane. It is considered the 
reference state. This liposome is inserted into a bath containing hypotonic aqueous 
medium. Due to osmotic pressure, created by the transmembrane gradient of solute 
concentration, water molecules will flow into the liposome through its membrane. 

This osmotic flow of solvent determines: 1) the swelling of the liposome; 
2) the stretching of liposomal membrane; 3) the dilution of the internal solution. 
The surface tension also increases in parallel with this liposomal expansion. The 
surface tension increases the pressure inside the vesicle.  
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Fig. 1. A cycle of the pulsatory liposome. In the first stage, the 
liposome swells from the initial state of radius R0 to the critical state 
of radius Rc, when a transbilayer pore appears (the upper part of the 
picture). In the second stage, the pore radius increases up to a maximum 
value, rm; after that the pore radius decreases up to the pore disappearance. 
Simultaneously with the pore evolution, the liposome relaxes until its 

radius becomes equal to R0 (the lower left part of the picture). 

Under these experimental conditions, either the liposomal membrane may be 
ruptured and destroyed, or one pore may appear through its lipid bilayer. If the 
swelling process is slow enough, the liposome increases up to a critical size, when 
a transient transmembrane pore appears. This event is followed by two 
simultaneous processes: the pore dynamics and the outflow of internal content of 
the vesicle, due to Laplace pressure.  

The pore dynamics consists of two phases: 1) the pore radius increases up to 
the maximum value, mr , and 2) the pore radius decreases until the closure of the 
pore (Fig. 1). Both phenomena, the increase in pore size and the leakage of internal 
liquid, determine membrane relaxation due to a reduction in the mechanical tension 
of the membrane.  

The membrane tension decreases until it becomes equal to the linear tension 
of the membrane edge. The internal liquid continues to leak outside the liposome, 
even after the edge tension equals the membrane tension. From the moment when 
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the edge tension equals the membrane tension, the second part of the pore 
dynamics starts, and the pore radius reduces until the pore closes. Therefore, the 
liposome returns to its initial size. We can suppose that the dynamics of the 
liposome described above can restart over and over again. This cyclic process 
ceases when the osmotic gradient becomes smaller than a critical value, which will 
be discussed below. 

In the present paper we will present a mathematical model of the first stage of 
a pulsatory liposome cycle: the liposome swelling.  

THE LIPOSOME SWELLING STAGE 

In the reference state the liposome is characterized by its radius R0, the 
membrane area A0, and the volume V0. In the swelling stage, the liposome radius 
increases from the initial value R0 to a critical value Rc due to water influx. The 
liposome volume change is determined by osmotic influx of water and is described 
by the following equation: 

 w µw s
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where the terms have the following significance: V is the liposome volume, Pw 
(measured in m/s) the water permeability through liposome membrane, Vµw the 
water molar volume (in m3/mol), A the membrane area, ∆Cs (measured in mol/m3) 
the transmembrane solute concentration gradient, ∆P the excess Laplace pressure, 
NA the Avogadro number, kB the Boltzmann constant, and T the absolute 
temperature.  

The Laplace pressure under a spherical surface is given by the formula: 

 
R

P σ2
=∆  (2) 

Here, σ is the tension of the stretched membrane and R the liposome radius.  
According to Hooke’s law, if the closed spherical membrane is stretched by a 

surface tension, its radius changes as: 

 ( )
E

RR σ1σ 0 +=  (3) 

where E is the elastic modulus for surface stretching or compression. 
The amount of internal solute is conserved throughout the liposome swelling 

stage. For the swelling of the liposome during the first cycle, we can write: 
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where C0s is the initial solute concentration, Cs the solute concentration when the 
liposome has reached the volume V during the swelling process, and Cfs the solute 
concentration at the end of swelling stage before pore nucleation when the 
liposome volume is Vc. 

If one considers the external solute concentration equal to zero, then ∆Cs = Cs. 
With equations (2), (3), and (4) in mind, we find from equation (1) that: 
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In the above-written formulae we have used the following notation: 
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By integrating the equation (5) one obtains the liposome radius R(t) as a 
function of time. The initial condition is: 

 0)0( RR =  (7) 

The analytical solution of equation (5) is: 
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where: 
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The swelling time of the liposome can be computed from the following 
equation: 

 c)( RtR =  (11) 

The most important parameter is the initial solute concentration. 
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RESULTS 

THE SWELLING TIME 

We have considered a unilamellar liposome inserted into a large box which 
contains water. In the relaxed state the liposome radius is equal to 19.7 µm. The 
relaxed state is the initial state of each cycle of a pulsatory liposome. Such 
unilamellar vesicles were used in experimental studies [2].  
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Fig. 2. The representation of time t (measured in seconds) required for the liposome to swell  

up to the radius R due to osmotic incoming water flow, as computed from equation (8).  
Five initial solute concentrations in the liposome were considered. 

These vesicles were tensed by intense optical illumination in the presence of 
fluorescent probes embedded in the lipid bilayer. When the vesicles reach the 
critical size (Rc = 20.6 µm), the membrane ruptures and a pore opens. We have 
supposed that the liposome swells up to the critical state due to osmotic stress. The 
swelling time was calculated using the formula (8) applied to the above-mentioned 
liposome for five initial concentrations of the internal aqueous solution of a non-
permeating solute: C0s =0.01 M, 0.03 M, 0.05 M, 0.07 M, and 0.09 M. The 
membrane permeability coefficient for water pw is equal to 3×10–5 m/s, and water 
molecular volume is Vµw = 18.04×10–6 m3/mol. The two-dimensional stretch 
modulus of the lipid bilayer is E = 0.2 N/m [2].  
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In order to find the dependence of liposome radius R on time during the 
swelling process, we used an indirect method for solving equation (8). Thus, we 
calculated the time of liposome swelling up to a given value of liposome radius. 
First, we obtained the swelling time as a function of liposome radius for each 
solute concentration: t = f(R). The results are plotted in Fig. 2. 
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Fig. 3. The dependence of the liposome radius on time during the swelling process  

of a lipid liposome inserted into hypoosmotic medium for five values  
of the initial internal concentration of aqueous solution. 
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Fig. 4. The dependence of the critical time, tcr, required by the liposome to reach its critical size,  

on the initial concentration of the osmotic solute inside the liposome. 
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The dependence of the liposome radius on the swelling time was easily 
obtained by inversion of the function t = f(R).  

In Fig. 3 we have plotted these functions for the selected concentrations listed 
on the graph. It is interesting that for low solute concentrations the dependence of 
the swelling liposome radius on time is linear. This cannot be true for greater solute 
concentrations. The method of numeric calculation of the swelling time at different 
values of liposome radius during the expanding process and the determination of 
the inverse function R = f(t) by fitting the values computed above may be used for 
high solute concentration gradients. 

We should remind that we considered liposomes of initial radius R0 = 19.7 
µm, and we have supposed that the liposome ruptures when it reaches the critical 
radius Rc = 20.6 µm. 
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Fig. 5. The plot of liposome radius when the swelling process stops before the liposome reaches  

the critical radius, depending on the initial solute concentration inside the liposome. 

While this is an artificial hypothesis, we have no reason to argue against this 
statement yet.  

We computed the swelling time required by the liposome to reach the critical 
radius Rc, for all the selected initial solute concentrations. We named this time the 
critical time, tcr. The dependence of the critical time on initial solute concentration 
is represented in Fig. 4.  

If the initial solute concentration is not sufficient to reach the critical radius, 
the swelling process ceases, the liposome remaining an indefinite time in this state. 
When the swelling process ceases, the liposome has reached a certain radius. We 
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named this variable the radius at an infinite duration of the process, because the 
swelling has stopped, and denoted it Rinf. 

In Fig. 5 we have drawn the graph of Rinf as a function of the initial solute 
concentration. 

DISCUSSION 

In this paper we have computed the inverse function of the differential 
equation solution given by formula (8) only for five initial concentrations of solute 
in the low range of values. This function, R = f(t), is a linear function. The 
numerical inversion of function (8) for large concentrations may be computed in 
the same way, but the corresponding analytical formula may be more difficult to 
find. 

In Fig. 4 we plotted the swelling time for a particular liposome having an 
initial radius R0 = 19.7 µm and a critical radius Rc = 20.6 µm. This liposome was 
initially filled with solute in aqueous solution at different concentrations. The 
swelling time decreased with increasing initial solute concentration. 

For example, at the initial concentration C0s = 0.01 M the swelling time tsw is 
equal to 180 s, but for the initial concentration C0s = 0.1 M the swelling time is 
equal to 20 s. 

An interesting and useful parameter is the liposome radius when it ceases to 
work. This parameter may be calculated from equation (8) for infinite t. 

We have computed this parameter for the case in which the solute 
concentration in the initial state of the last cycle has values similar to those used 
above.  
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