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Abstract. In this work we present the synchronization of two Lotka-Volterra with four 
competitive species in order to formulate the biological control with two preys, two predators. Our 
results show that the transient until synchronization depends on the initial conditions of two systems 
and on the control strength. For practical reasons we need a single controller in order to achieve the 
synchronization; for these systems the synchronization is about four times faster when we use all the 
controllers than when we use a single controller. In addition the only way we can use a single 
controller is if we apply it in the first or in the third equation. If we must interfere on the second 
population, we must use two controllers. We suggest that we can control the pests by synchronizing 
the pest population with the population of the parasitoid by varying the initial conditions and the 
control strength. 
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INTRODUCTION  

The pest control is of great interest in agriculture domain because pests have 
been the major factor that reduces the agricultural production in the world. 
Different methods are being used in the process of pest management, for instance, 
chemical pesticides, biological pesticides, computers, atomic energy [8, 13], etc. Of 
all the methods, chemical pesticides seem to be a convenient and efficient one, 
because they can quickly kill a significant portion of the pest population. But 
synthetic chemical pesticides that have been introduced and that are being widely 
used on agricultural crops, in order to control the agricultural pests, represent a 
significant food safety risk [2, 14]. Organic agriculture imposes biological control 
which uses living organisms to suppress pest populations.  
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Periodic releases of the parasitoid Encarsia formosa were used to control 
greenhouse whitefly, and the predaceous mite Phytoseiulus persimilis was used for 
the control of the two-spotted spider mite. There is a vast amount of literature on 
the applications of microbial disease to suppress pests. At the same time, there are 
only a few works on the mathematical models of the dynamics of microbial 
diseases in pest management. Very recently Yuanshun Tan and Chen [17] used a 
simple mathematical model for pest control by impulsively releasing infected pests.  

There are different approaches in regard to the possibility of modeling 
agricultural systems. One of the famous examples of a simple model is the logistic 
map which can model the complex dynamics of some real population systems. The 
Lotka-Volterra model is widely used to study the dynamics of interacting species. 
In this case, the prey-predator or host parasitoid models ignore many important 
factors such as interactions between other species of the same ecosystem, 
interactions with the environment, etc. Arneodo et al. [1] have demonstrated that 
one can obtain chaotic behaviour for three species. In a 1988 paper Samardzija and 
Greller [15] propose a two-predator, one prey generalization of the Lotka-Volterra 
problem into three dimensions. The synchronization of the trajectories of the two 
attractors of this modified, three-dimensional Lotka-Volterra equation, was 
performed by John Costello [3] using the Kapitaniak method. In addition Deng and 
Loladze [4] argued that the classical predator-prey models, such as Lotka-Volterra, 
track the abundance of prey, but ignore its quality. Therefore, the authors showed 
that each organism is a mixture of multiple chemical elements and that the ratios of 
these elements can vary within and among species (these ratios represent prey 
quality). When these ratios vary, as they frequently do in nature, seemingly 
paradoxical results can arise such as the extinction of a predator that has an 
abundant and accessible prey. The authors suggested that, when competing 
predators differ in their sensitivity to prey quality, then all species can coexist via 
chaotic fluctuations. 

On the basis of the Lotka-Volterra model, the pest control was formulated by 
Rafikov [13, 14] analyzing the relations between two soybean caterpillars 
(Rachiplusia nu and Pseudoplusia includens) supposed to be parasitoids 
(considering that there are soybean plants in abundance). The main scope of the 
authors was to obtain a pest control strategy through the introduction of natural 
enemies. The control needs to move the system to the steady state; this means that 
the pest density is stabilized without causing economic damages, and that the 
natural enemies’ population is stabilized at a level that can control the pests. The 
numerical simulations of the authors based on one prey - one predator Lotka-
Volterra model showed that control strategy can maintain the pest population 
below injury level for a long time. For a Lotka-Volterra model with three species, 
two preys - one predator, the analytical and numerical studies revealed that control 
strategies could not control the pest population below the economic injury level. 
The pest control problem was resolved for a two preys - two predators Lotka-
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Volterra model. In this case, the two caterpillars were considered as different 
species and one new parasitoid was introduced into the system, and the ecosystem 
was modeled by four differential equations. Over the past decade, there has been 
considerable progress in the generalization of the concept of synchronization to 
include the case of coupled chaotic oscillators especially for biological systems. 
When the complete synchronization is achieved, the states of both systems become 
practically identical, while their dynamics in time remains chaotic [5, 6, 10, 11, 
12]. Many examples of biological synchronization have been documented in the 
literature, but currently theoretical understanding of the phenomena lags behind 
experimental studies.  

Sprott  [16] found a high-dimensional Lotka-Volterra model (many-species) 
that exhibits spatiotemporal chaos. The authors considered the simplest form of 
such a system in which N species with population xi (for i = 1 to N) compete for a 
finite set of resources according to: 
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Here ri represents the growth rate of species i and aij represents the extent to 
which species j competes for resources used by species i. For the single-species 
case, i.e. N = 1, the equation (1) is reduced to the logistic equation. In the two-
species case, i.e. N = 2, there is a coexisting equilibrium. For three species chaotic 
solutions of equation (1) are possible. 

Vano [18] studied the occurrence of chaos in basic Lotka-Volterra models of 
four competing species. They found chaos in a four-species competitive Lotka-
Volterra model for values such as:  
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Figure 1 shows the attractor projected onto x1, x3, x4 space for the chaotic 
system (1) with values from (2).  

To synchronize two Lotka-Volterra systems with four competitive species, 
we used a simple method for chaos synchronization proposed in [7, 9]. 

If the chaotic system (master) is: 

 )(xfx =  (3) 

where       

 n
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then the slave system is of the form:  

 )()( xyzyfy −+=  (5) 

where the function z can be chosen as: 

 
2)( xyz −−=  (6) 

 
Fig. 1. Phase portrait of (x1, x3, x4) for Lotka-Volterra generalized system with four competitive 

species [x1(0) = x2(0) = x3(0) = x4(0) = 1]. 

RESULTS  

CASE 1, ALL CONTROLLERS 

From (1) and (2) the master system is:  

 )52.109.11( 32111 xxxxx −−−=  

 )36.144.01(72.0 43222 xxxxx −−−=  

 )47.033.21(53.1 43133 xxxxx −−−=  

 )35.051.021.11(27.1 432144 xxxxxx −−−−=  (7)  
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The slave system with four controllers becomes: 

 )()52.109.11( 11132111 xyzyyyyy −+−−−=  

 )()36.144.01(72.0 22243222 xyzyyyyy −+−−−=  

 )()47.033.21(53.1 33343133 xyzyyyyy −+−−−=  

 )()35.051.021.11(27.1 444432144 xyzyyyyyy −+−−−−=  (8) 

and the control strength is of the form:  

 2
111 )( xyz −−=  

 2
222 )( xyz −−=  

 2
333 )( xyz −−=  (9) 

 2
444 )( xyz −−=  (9) 

The synchronization is very fast as Figs. 2–5 show. 
 

 
Fig. 2. Phase portrait of (x4, y4) for Lotka-Volterra generalized system with four competitive species 
[x1(0) = x2(0) = x3(0) = x4(0) = 1, y1(0) = y2(0) = y3(0) = y4(0) = 1.1, z1(0) = z2(0) = z3(0) = z4(0) = 1]. 
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Fig. 3. x1(t), y1(t), [x1(0) = x2(0) = x3(0) = x4(0) = 1, y1(0) = y2(0) = y3(0) = y4(0) = 1.1,  

z1(0) = z2(0) = z3(0) = z4(0) = 1]. 

 
Fig. 4. Synchronization errors between master and slave systems [x1(0) = x2(0) = x3(0) = x4(0) = 1, 

y1(0) = y2(0) = y3(0) = y4(0) = 1.1, z1(0) = z2(0) = z3(0) = z4(0) = 1]. 
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Fig. 5. The control strength z1 [x1(0) = x2(0) = x3(0) = x4(0) = 1, y1(0) = y2(0) = y3(0) = y4(0) = 1.1, 

z1(0) = z2(0) = z3(0) = z4(0) = 1]. 

CASE 2, ONE CONTROLLER 

Debin Huang [9], by testing the chaotic systems including the Lorenz system, 
Rossler system, Chua’s circuit, and the Sprott’s collection of the simplest chaotic 
flows, found that coupling only one variable is sufficient to achieve identical 
synchronization of a three-dimensional system. 

For practical applications we need a single controller. In [12] we 
synchronized the Lorenz system using a single controller in any of the equations. In 
[6] we were able to synchronize two electric circuits experimentally. Now we are 
studying the use of a single controller in order to synchronize two Lotka-Volterra 
systems with 4 species so that we can later perform the synchronization 
experimentally. This theoretical research on the ways that the synchronization can 
be practically used is what this paper brings, in comparison with other authors who 
researched chaotic behavior of Lotka-Volterra system [13, 14].  

For system (1), the only way to achieve synchronization using a single 
controller is to apply it in the first or in the third equation of the system. For 
example, if the controller is in first equation, the synchronization is given in Fig. 6 
but it is slower than the first case. If the controller is used in the second or in the 
fourth equation, species 1 collapses, as Fig. 7 shows. 
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Fig. 6. Synchronization errors between master and slave systems for one controller  

[x1(0) = x2(0) = x3(0) = x4(0) = 1, y1(0) = y2(0) = y3(0) = y4(0) = 1.1, z1(0) = 1]. 

 

Fig. 7. x1(t)  , y1(t), [x1(0) = x2(0) = x3(0) = x4(0) = 1, y1(0) = y2(0) = y3(0) = y4(0) = 1.1, z2(0) = 1]. 

Therefore, in order to control all the species using a single controller, this 
controller must be used in equation (1) or in equation (3) of the system (7). 
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CASE 3, TWO CONTROLLERS 

If we have to interfere on the second population, we must use two controllers. 
For two controllers in the first and the second equation, the synchronization errors 
are given in Fig. 8.  

For these two controllers the synchronization is achieved later than in the 
earlier cases. 

 

 
Fig. 8. Synchronization errors between master and slave systems for two controllers  

[x1(0) = x2(0) = x3(0) = x4(0) = 1, y1(0) = y2(0) = y3(0) = y4(0) = 1.1, z1(0) = z2(0) = 1]. 

CONCLUSIONS 

In this work we present the synchronization of two Lotka-Volterra with four 
competitive species in order to formulate the biological control with two preys - 
two predators. Our results show that the transient time until synchronization 
depends on initial conditions of two systems and on the controller’s number. For 
practical reasons we need a single controller in order to achieve the 
synchronization; for these systems the syncronization is about four times faster 
when we use all the controllers than when we use a single controller. In addition, 
the only way we can use a single controller is if we apply it in the first or in the 
third equation. If we have to interfere on the second population, we must use two 
controllers. For two controllers the synchronization is achieved later than in the 
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earlier cases. The control method described in this paper is very easy and might be 
useful in the case of other chaotic systems. We suggest that we can control the 
pests by synchronizing the pest population with the population of the parasitoid by 
varying the initial conditions and the control number. 
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