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Abstract. Evidence of a chaotic behavioral trend in eye movement dynamics was examined in 
the case of a saccadic temporal series collected from a healthy human subject. Saccades are 
highvelocity eye movements of very short duration, their recording being relatively accessible, so that 
the resulting data series could be studied computationally for understanding the neural processing in a 
motor system. The aim of this study was to assess the complexity degree in the eye movement 
dynamics. To do this we analyzed the saccadic temporal series recorded with an infrared camera eye 
tracker from a healthy human subject in a special experimental arrangement which provides 
continuous records of eye position, both saccades (eye shifting movements) and fixations (focusing 
over regions of interest, with rapid, small fluctuations). The semi-quantitative approach used in this 
paper in studying the eye functioning from the viewpoint of non-linear dynamics was accomplished 
by some computational tests (power spectrum, portrait in the state space and its fractal dimension, 
Hurst exponent and largest Lyapunov exponent) derived from chaos theory. A high complexity 
dynamical trend was found. Lyapunov largest exponent test suggested bi-stability of cellular 
membrane resting potential during saccadic experiment. 
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INTRODUCTION 

Most of the computational studies on biosignals extracted from excitable 
tissues and organs have been dedicated to the interpretation of 
electroencephalogram or electrocardiogram data recorded from normal subjects 
and patients with various disorders [3, 7, 8, 9, 10]. In the last years, there has been 
an increasing interest in using the nonlinear dynamics techniques to model 
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oculomotor control and to analyze eye movement time series [12, 13, 14]. The 
study of eye movements is an important source of information on the visual-motor 
system, first because the presence of abnormal eye movements in a patient may 
help us understand how the brain works.  

Some researchers focused on the eye movements recorded during reading of 
normal and pathological subjects, searching for evidence of chaotic, nonlinear 
dynamical behavior [12]. Both power spectral density analysis and fractal 
dimension determination showed evidence of nonlinearity as manifest for chaotic 
behavior. They concluded that the computed fractal dimension seemed directly 
related to qualitative assessment of reading ability. Analysis of another type of 
movement, smooth pursuit of moving targets, gave similar results. 

Another study showed that optokinetic nystagmus appears to have some 
nonlinear and deterministic components, along with significant randomness [14]. 
To indicate the possibility of chaotic dynamics in such cases, the correlation 
dimension of these reflexive eye movements was computed, resulting in a 
noninteger value, signifying a fractal dimension [13]. 

Saccadic eye movements can be defined as rapid eye movements that shift a 
peripheral visual image onto the center of the retina, where it can best be seen. 
These rapid eye movements are designed to move the eyes as quickly as possible 
to minimize interference with vision [6]. Saccades can be better understood as the 
result of the complex integration of both motor and sensory systems. The visual 
system processes information coming from retinal pathways that go to the superior 
colliculus and visual cortices (e.g., V1 and parietal and frontal eye fields). 
Saccades are initiated by activity in neurons of the frontal and parietal eye fields of  
the cerebral cortex. These signals then follow two pathways projecting to the 
nucleus reticularis tegmenti pontis of the pontine reticular formation and the 
superior colliculus.  

In this paper, we present the results of the computational approach carried 
out for a time series extracted during saccadic eye movements, based on chaotic 
determinism theory, in accord with the analysis procedure proposed by Sprott [15] 
in order to assess the dynamical dominant trend – quasi-periodic, chaotic or 
random. 

MATERIAL AND METHODS 

SUBJECTS 

One healthy, adult male volunteer took part in eye movement research at the 
Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of 
Health, USA. The subject performed a visually-guided saccade task approved by 
the Institutional Review Board and which conformed to the Helsinki guidelines.  
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APPARATUS AND EYE MOVEMENT RECORDING 

The subject executed horizontal saccades in response to two red spots (3 mm 
diameter) acting as visual stimuli – a central fixation point and a target that could 
be shifted either to the left side or to the right side of the fixation point; both red 
light spots were projected from lasers onto a screen placed frontally at 105 cm 
from the subject’s eye. Angular eye movements were recorded from the right eye 
using an infrared iView X Hi-Speed camera (SMI) eye tracking system (sampling 
frequency of 1,000/s). The subject response to the visual stimulation was recorded 
in dim light conditions. The brightness (Konica Minolta LS-110) of the fixation 
point and the target was 46.35 cd/m2 and that of the background was of 0.009 cd/m2. 

EXPERIMENTAL DESIGN 

In the experiment, a central spot appeared, acting as the fixation point for the 
subject. After a short time another spot (target) was turned on at an eccentric 
location (4, 6, 8, 10 or 12 degrees, leftward or rightward of fixation point). Onset 
of the target could follow offset of the fixation point after a short time, or it could 
appear synchronously with the offset of the fixation point, or it could precede the 
offset of the fixation point. This stimulus onset asynchrony was randomly chosen 
from 0, 50, 100, 150, 200, 350, or 500 ms. 

The subject was asked to look at the central point until the target appeared, 
and then to immediately execute a voluntary saccade to the target. After the 
disappearance of the target, subject returned to the central point. The eye 
movement recording session took about 25 minutes. 

The sequence chosen for the computational study had 10,000 data points – 
representing a median segment of the recorded signal, when the subject was 
familiar with the visual task but not too tired. 

THEORETICAL BACKGROUND 

Computational insight into the neural system coordinating eye movements 
was accomplished using saccadic data processing and interpretation according to 
the strategy proposed by Sprott and Rowlands [15] described below. This was 
designed based on graphical and numerical linear as well as nonlinear tests, the 
latest being developed according to chaos theory, especially for complex system 
investigation, where writing differential equations is too difficult, considering the 
numerous state parameters, and very difficult to identify. So, the analysis of data 
appearance probability, of the data power spectrum, the semiquantitative 
description of the so-called portrait in the state space, the evaluation of the system 
sensitivity to initial conditions, and other computational techniques could enable 
the researcher to gather the basic information for assessing the predictability in the 
system dynamics. 
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The probability distribution test provides the distribution histogram of data 
for any kind of signal. Periodic data from more linear processes should give a 
simple histogram with sharp edges; a Maxwellian distribution usually results for 
random data (high noise level) but this can also be the case for some so-called 
chaotic data extracted from very complex systems, such as biological ones; some 
chaotic systems are characterized by a probability distribution shape that suggests 
repetitive symmetry – as in the case of fractal objects.  

The fast Fourier transform test involves a spectral decomposition of the 
recorded biosignal that displays the power (mean square amplitude) as a function 
of frequency (the Nyquist critical frequency, i.e. the reciprocal of twice the interval 
between the data points). On a log-linear scale, periodic and quasi-periodic data 
will provide a few dominant peaks in the spectrum. The chaotic and random data 
series give rise to a broad spectrum; in the chaotic series the amplitude decreases 
rapidly as frequency increases.  

The state space test is based on interpretation of the shape of the system 
attractor [16] – i.e. the totality of possible equilibrium points toward which the 
system is attracted when it evolves with respect to the same laws but starts every 
time from slightly different initial conditions. It is an abstract space, often with 
more than three dimensions, in which the system state variables are the n position 
coordinates (x1, x2, x3, …, xi, xi+1,…, xn) and n velocity coordinates (x1’, x2’, x3’, …, 
xi’, xi+1’,…, xn’). The state space may be re-constructed from a single measurable 
variable based on its temporal variation X(t) together with its derivative, X’(t). 

In the state-space, a periodic system portrait appears as a closed loop, while a 
quasi-periodic system has torus like attractor; for more complex dynamics, strange 
attractors appear as more complicated objects, yet with a discernible shape that can 
be characterized by a non-integer dimension, unlike the real geometrical objects 
having integer Euclidian dimension from 0 to 3.  

The correlation dimension test involves the calculation and interpretation of 
the fractal dimension of a virtual object equivalent to the system attractor. 
According to Schmeisser et al. [12], the correlation dimension is one member of an 
infinite family of fractal dimensions (generally non-integer), and any one of which 
might be used to characterize an attractor. The correlation dimension (CD) can be 
calculated [4] from the correlation integral C(r): 

 C(r) = lim N→∞ 1/N2 {number of pairs of points with separation < r}, (1) 

which is the probability that two randomly chosen points on the attractor are 
separated by a distance less than r; then CD is given by:  
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According to [2] for data series comprising N points, the embedding 
dimension (EDmax) that still provides reliable correlation dimension is: 

 EDmax = 2log10 N  (3) 
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where by embedding dimension the scale of the system observation might be 
understood analogously to the case of visual observation of real bodies with a 
variable objective microscope. 

The Hurst exponent test provides a numerical estimate of the predictability of 
a time series. It defines the relative tendency of a time series to either regress to a 
longer term mean value or 'cluster' in a direction – and is directly related to the 
fractal dimension. The Hurst exponent, H, can be estimated [5] by:  

 ( )log /
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R S
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where T is the duration of the sample data and R/S the corresponding value of the 
rescaled range. The rescaled range is the measure characterizing the divergence of 
time series defined as the range of the mean-centered values (R) for a given 
duration (T) divided by the standard deviation (S) for that duration. 

The values of the Hurst exponent range between 0 and 1. A Hurst exponent 
value close to 0.5 indicates a random signal (a Brownian time series), i.e. there is a 
50% probability that future values will either increase or diminish since there is no 
correlation between any element and a future one. Series of this type are hard to 
predict.  

A Hurst exponent value H between 0.5 and 1 indicates “persistent behavior”, 
that is the time series is trending. If there is an increase from time step [t–1] to [t] 
there will probably be also an increase from [t] to [t+1]. The same is true for 
decreases the larger the H value, the stronger the persistence trend. A value of H 
between 0 and 0.5 exists for time series with “anti-persistent behavior” – a 
decrease (or increase) tendency being followed by an increase (or decrease). 
Persistent dynamical trends are easier to predict than series falling in the other two  
categories. 

Lyapunov exponent measures the system predictability by its sensitivity to 
initial conditions. It gives another insight of complex system behavior (in order to 
accomplish the dynamics diagnosis) characterizing highly complex systems by 
means of the divergence of close trajectories traced out during system evolutions in 
the phase space. So, Lyapunov exponent tells us the rate of divergence of nearby 
trajectories [14] – a key component of chaotic dynamics. There are many 
algorithms for calculating the largest Lyapunov exponent, but the most robust 
approach was introduced by Rosenstein [11] for analyzing biomedical or biological  
datasets, which are inherently noisy and usually short relative to the lengths 
required to yield adequately reliable results from this algorithm.  

The basic idea of this approach is that the maximum Lyapunov exponent (λ1) 
for a dynamical system can be defined from: 

 ( ) 1t
0d t d e= λ  (5) 



 Corina Aştefănoaei et al. 6 86 

where d(t) is the mean Euclidean distance between neighboring trajectories in state  
space after some evolution time t and d0 is the initial separation (or perturbation) 
between neighboring starting points [11]. 

It is widely accepted that none of these tests could give by itself the answer 
to the question regarding the dynamical trend of a complex system so that at least 
several consecutive such analyses are needed in order to characterize the degree of 
complexity of system behavior and this way the dominant dynamical component. 
In the results section, the above mentioned computational approach was applied to 
the raw data signal in parallel to the corresponding smoothed data series – the 
numerical smoothing meaning the replacement of every data point with the 
average value between that data and its two close neighbors. 

RESULTS AND DISCUSSION 

The next figures describe the results obtained following the application of the 
analysis strategy mentioned above to the eye movement records. In Fig. 1 the raw 
and smoothed data corresponding to the X(t) data series can be seen. The positive 
values correspond to eye shift toward the right side while the negative ones to left 
side eye saccadic movement. 

The saccadic amplitudes were assumed to be no larger than 12 degrees since 
this is the maximum amplitude of the target shift. Sudden and very rapid variations 
having however significantly higher amplitudes (up to 25 degrees) could be 
recorded when the subject has blinked involuntarily; these fluctuations were 
diminished after smoothing the data (Fig. 1, right). 

Asymmetric probability distribution was evidenced for the raw data (Fig. 2, 
black) because of the small probability peaks of high negative values 
corresponding to involuntary eye blinking that occurred accidentally during the left 
side saccades. 

For the probability distribution test, the whole interval of the angular shifts 
was divided in 22 equal subintervals of two degrees width (the 12 subintervals 
from –12 to +12 degrees corresponding to the planned displacements of the target 
plus the 10 subintervals covering the extreme eye movements, i.e. the blinking 
leading up to 25 degree shifts during recording experiment). 

The smoothing procedure has obviously eliminated part of signal 
fluctuations, as it can be seen in the detail of Fig. 2 where high negative amplitude 
bars vanished. 

Power spectrum test revealed that for the raw signal (Fig. 3, left) the 
logarithm of square amplitude, log(P), monotonically decreases for small and 
medium frequency domains, suggesting the presence of high complexity dynamics 
(deterministic chaotic behavior); the broad graph with few peaks in the high 
frequency domain seems to correspond to the quasi-periodical dynamical 
component overlapped onto the chaotic one. 
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Fig. 1. The dynamics of angular shift X(t) during saccadic eye movement for raw and smoothed data. 

After signal smoothing, the evidence of chaotic dynamical pattern appears 
extended toward higher frequency domain where the large peaks vanished being 
replaced by the monotone slower decrease (Fig. 3, right). 

 

 
Fig. 2. Probability distribution histograms for saccadic eye movements: black – raw data; gray – three 

times smoothed data; (up-right: detail for asymmetric negative value interval). 

Phase-space portrait test application generated the plots from Fig. 4. For raw 
data certain high amplitude fluctuations of the angular shift shaped large 
concentrically disposed polygons that are very much attenuated for the smoothed 
data (Fig. 4, right). In this situation the strange attractor appears more clearly in the 
shape of a two asymmetrical lobe object, so one can say that this test reveals the 
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same complex dynamical components in both the recorded signal and the 
smoothed one; exception is related to the noise like behavioral trend that 
underlines the large “overall” contours from the negative half-space of the graph 
(corresponding to left side saccades). The CD values that increased over 4, 
corresponding to embedding dimension (ED) of 9 to 10, may be due to the 
significant random component of raw data series (Fig. 5, black). This could result 
from unavoidable recording noise or, as well, from the intrinsic fluctuations caused 
by frequent, large involuntary blinks of the subject during saccadic movement – 
and it is most difficult to discriminate between these two causes. 

 

 
Fig. 3. Linear logarithmic representation of the power spectrum generated  

by fast Fourier transformation of raw and smoothed data. 

 
Fig. 4. The phase space portrait (X(t) vs. X’(t)) for raw and smoothed data;  

X(t) is the angular recorded shift while X’(t) is its derivative. 



9 Eye movement recording and analysis 89 

Correlation dimension (CD) test allowed numerical evaluation of the strange 
attractor fractal dimension (Fig. 5) for 1 to 10 embedding dimension (ED). 

In the smoothed data series, as expected, the fluctuations related to electronic 
noise or/and to the subject blinking reflex being much diminished, in the graph 
CD(ED) the saturation trend resulted (Fig. 5, gray) beginning with ED equal to 
seven; this is concordant with the fact that ED equal to eight is given by relation 
(2) as highest reliable value for CD calculation (since the size of the data series is 
N = 104 so that log10(104) = 4 and ED = 8). 

The Hurst exponent exhibits rather high values for both raw and smoothed 
data (Fig. 6) as can be seen from the alignment parallel to the first bisectrix of the 
two graphs. It indicates rather persistent behavior, which seems to be the hallmark 
of predictable sequences ubiquitous all over the saccadic eye movement recording 
duration. 

 

 
Fig. 5. The correlation dimension (CD) versus embedding dimension (ED) for raw (black graph)  

and smoothed data (gray graph) (time delay n = 1). 

 
Fig. 6. Hurst exponent for raw data and smoothed data; DX – the angular shift displacement 

(variation) for every time value within the data series. 
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Lyapunov exponent test allowed the estimation of divergence of close 
trajectories described by the investigated (visual-motor) system in the phase-space. 
Small positive values were obtained for both raw and smoothed data with 
considerable reduction of computing errors following smoothing procedure application. 

 

 
Fig. 7. The Lyapunov exponent (LE) versus embedding dimension (ED)  

for raw data and three times smoothed data. 

Supplementary visualization of the Lyapunov exponent (LE) dependence on 
the embedding dimension (ED) is provided in Fig. 7 where the monotone decrease 
of LE value can be seen up to the ED equal to 4. The small positive LE values the 
system reached for ED higher than 4 suggest the system evolution near a 
bifurcation point, meaning the possible evolution toward any of two quasi-stable 
states that equally attract the studied system – so two possible trajectories may 
evolve from the bifurcation point, each leading toward another equilibrium state. 
Roughly, in the case of the excitable cell behavior, the general issue of bifurcated 
trajectories could be associated with the hypothesis of two resting potential levels 
co-existing with almost equal probabilities. Following each new voluntary saccade 
preparation and triggering, the electrical potential from the neural cell membranes 
could return to the initial resting potential – corresponding to the initial state at the 
experimental test beginning, when the subject was completely relaxed, or, another 
resting potential could characterize the neural membrane dynamics during the 
saccade recording. This way the two resting potential values could define the 
voluntary saccade development in the condition of the described experiment – and 
the Lyapunov exponent quasi-null values give the signature for distinct chaotic 
dynamics of the visual-motor system. Our further research task will be focused on 
the identification of the specific neural areas responsible for such chaotic behavior, 
based on the below considerations.  

One of the major functions of the central nervous system is the generation of 
movement in response to sensory stimulation [1]. The visual guidance of saccadic 
eye movement represents one form of sensory-to-motor transformation that has 
contributed significantly to the understanding of motor control of saccadic eye 
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movements. From the biophysical viewpoint the key segment of the neural 
pathway that is mainly responsible for complex chaotic dynamics would be 
characterized by voltage gated potassium channels that could impede the recovery 
of the initial resting potential possibly due to their sensitivity diminution during 
repeated saccadic activation. So, the membrane re-polarization could occur only 
partially for some saccades while for others it could be complete – which may 
explain the system oscillation between two stable states, as suggested by near-zero 
positive Lyapunov exponent. 

CONCLUSIONS 

Following the application of the computational tests based on chaos theory to 
the analysis of saccadic eye movements in the frame of a specific experimental 
design, a chaotic dynamical trend was found. Possible alternation in the 
functioning of some neural cell potassium channels due to repeated voluntary 
saccades could underlie the observed results. 
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