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Abstract.  The active transport of ions builds and maintains electrochemical potential gradients 

across biological cell membranes. It is performed by ion pumps: membrane proteins fueled by 

energy-releasing processes. The stochastic energization-relaxation channel (SERC) model of active 

transport describes the pump as a multi-ion channel with two conformations, termed energized and 

relaxed, of specific free energy profiles. Here we present a new, analytic formulation of the SERC 

model, based on differentiation formulae from the theory of stochastic differential equations. The 

energization/relaxation switches are described in terms of a Markovian dichotomous noise. Upon 

averaging the kinetic equations over the noise, the mean ion flux per pump molecule is obtained as a 

function of time. Its asymptotic value, the stationary ion flux generated by one transport protein, is a 

measurable quantity, found to be in qualitative agreement with experimental results on 

bacteriorhodopsin, a light-driven proton pump.   
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INTRODUCTION  

Living cells hinge on the active transport of ions across cell and organelle 

membranes against thermodynamic forces. Active transport is carried out by 

proteins that couple an energy releasing process, such as adenosine triphosphate 

(ATP) hydrolysis or photon uptake, to the transmembrane movement of ions [14]. 

The mechanism of active transport, by which a scalar or locally vectorial process 

drives the directional movement of ions through the membrane protein (also called 

ion pump), is not fully understood [17]. It has long been argued that during 

pumping the transporter must assume at least two distinct conformational states [6], 

and Tanford proposed the today widely accepted alternative access model of 
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substrate translocation [22]. Läuger suggested a channel-like structure for the 

transport protein [13, 14]; subsequent experiments support his conjecture [5, 17].  

In the stochastic energization-relaxation channel (SERC) model of vectorial 

ion transport [18, 19, 20], the transporter is viewed as a multi-ion channel [9] with 

two main conformations, referred to as energized and relaxed states. These are 

characterized by distinct free energy profiles. The assumption is that switches 

between them occur stochastically and are powered by an energy supplying 

process. Monte Carlo simulations revealed the qualitative agreement between 

model predictions and experiments [18, 19, 20].  

MATERIALS AND METHODS  

We consider a proton pump with three proton binding sites [19]. The simple 

kinetic model of single-ion occupancy is described by a cyclic, four-state reaction 

scheme (Fig. 1A), in which 1 stands for the empty configuration, in which no 

proton is bound to the active transport protein.  

We assume that during transition 12 a cytoplasmic proton is bound to the 

first binding site. Hence, the corresponding rate constant, 21k , is 

pseudomonomolecular; it contains the cytoplasmic concentration of the transported 

ion: int

*

2121 ]H[  kk , where 
*

21k  is a bimolecular rate constant. Similarly, the 

process 41 leads to the release of a proton into the surrounding medium, and the 

rate constant of the inverse transition, ext

*

4141 ]H[  kk , incorporates the 

extracellular proton concentration. These rate constants account for the pH 

sensitivity of the model.  

The rate constants for the transport of electrically charged particles depend on 

the transmembrane electric field according to the Boltzmann relation:  

 
0 ψ

exp αij ij ij ij

zF
k k d

RT

 
  

 
, (1) 

where we have denoted by int extψ ψ ψ   the electric potential difference 

between the intra- and extracellular media, 
0

ijk  corresponds to ψ 0  , whereas 

jiij dd  are fractions of the membrane potential traversed by the transported ion, 

of valence z , during the ij   or ji   processes, respectively. These are 

dimensionless numbers between 0 and 1, also called electrical distances, and are 

not to be confused with physical ones. 
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Fig. 1.  Reaction cycle of a proton pump with three ion-binding sites at single (A) and multiple 

occupancy (B). Dark dots signify occupied sites. The left circle from each triplet represents the site 
closest to the cytoplasm, whereas the right one stands for the site facing the extracellular medium. 

Primed rate constants may differ from the unprimed ones due to electrostatic repulsion between ions 

in the pump or conformational changes induced by site occupation; here we take .ij ij ij ijk k k k      

The rate constants used in this work are: for the relaxed state * relaxed

21k = 1011 M–1s–1, 
relaxed

12k = 1 s–1, 

relaxed

32k = 102 s–1, 
relaxed

23k = 1 s–1, 
relaxed

43k = 10–8 s–1 , relaxed

34k =102 s–1, relaxed

14k = 107 s–1,  

* relaxed

41k = 1010 M–1s–1 and for the energized state 
* energized

21k = 1011 M–1s–1, 
energized

12k = 1 s–1,  

energized

32k = 10–6 s–1, 
energized

23k = 103 s–1, 
energized

43k = 103 s–1 , 
energized

34k =102 s–1, 
energized

14k = 107 s–1,  

* energized

41k = 1010 M–1s–1  [19]. 

The partitioning coefficients, αij , give the fraction of the potential drop, 

ext int(ψ ψ )ijd  , which has to be traversed during the ij   process in order to 

reach the maximum of the corresponding energy barrier. Their sign depends on the 

direction of charge translocation; in our context they are positive for rate constants 

of forward transitions. The requirement of equilibrium detailed balance [7, 14] is 

satisfied if α α 1ij ji  . For symmetric barriers, with energy maxima lying 

halfway between neighboring minima [9], we have α α 1/ 2ij ji   . Throughout 



236 Monica Neagu  4 

 

the paper, T  stands for the absolute temperature, whereas R  and F  denote the 

gas constant and Faraday’s constant, respectively. We use the rate constants from 

the caption of Fig. 1, proposed for simulations of bacteriorhodopsin [19].  

Suppose that we have N pumps in the membrane under study and that, at a 

given moment, iN  of these are in state i . The system may be described by the set 

of mole fractions, NNp ii / , which may be viewed as the probabilities of 

finding a pump in the states labeled by the index i . Since in the single-ion channel 

model each pump is supposed to be in either of the states 1, 2, 3 or 4, shown in 

Fig. 1A, the mole fractions satisfy the normalization relation 1
4

1


i

ip . In the 

absence of energization-relaxation jumps, the kinetic equations associated to the 

reaction cycle of Fig. 1A read:  

    
d

d

p
Kp

t
  (2) 

where p stands for the column vector of components p1, p2, p3, p4, and  
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 (3) 

The solution may be written as a linear combination, 
4

1

( ) exp( )i i i

i

p t AV v t


 , where iv  are the eigenvalues of K  and iV denotes the 

normalized eigenvector corresponding to the eigenvalue iv . The integration 

constants, iA , are determined by the initial condition. Being mainly interested in 

the stationary properties of the system, obtained asymptotically at t , we may 

choose the initial condition arbitrarily. The ion flux per pump molecule is given by 

14 4 41 1φ k p k p  . 

Multi-ion models have been proposed earlier to explain the selectivity of ion 

channels [8, 9]. They also account for high throughput since site occupancy limits 

the set of possible transitions. Fig. 1B depicts the corresponding reaction scheme. 

The state of the system will be specified again by mole fractions, which satisfy the 

normalization condition 12343424234321  pppppppp . Here 
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indices refer to occupied sites except for the first term, which is the fraction of 

empty pumps. The kinetic equations may be solved, just as in the case of single-ion 

occupancy, by numerically solving the associated eigenvalue problem and using 

the analytic solution of the system. The numerical solutions of the eigenvalue 

problems were obtained using MATLAB (The MathWorks, Inc., Natick, MA, 

USA). 

The ion flux per pump in this context may be written as: 

   14 4 24 34 234 41 1 2 3 23φ k p p p p k p p p p        .  

An energization or relaxation process, that is, a jump between the two free 

energy profiles [18], may be implemented using a symmetric Markovian 

dichotomous noise of unit norm, defined by the properties [4, 10]:  

 
ξ( ) { 1,1},t  

 
(4a) 

 
ξ( ) 0,t    (4b) 

 
ξ( )ξ( ) exp( λ | ' |).t t t t   

 
(4c) 

This is a particular case of a dichotomic Markov process [23] with values 1  

and 1  of average duration τ and τ  , respectively. The requirement of 

vanishing time average, Eq. (4b), implies τ τ 0 
   . Eq. (4c) gives the time 

autocorrelation function of the noise. The parameter  is the inverse of the noise 

correlation time, c ; it is given by cλ 1 τ 1 τ 1 τ     . In the particular case of 

a symmetric noise of unit norm, the mean lifetimes of each value of the random 

variable are equal, 
1τ τ 2λ 

   . Thus, the average frequency of jumps 

undergone byξ( )t  is λ 2  and, since every other jump is an energization, the 

average frequency of energizations is λ 4 . 

We write the kinetic equations of the system with energization/relaxation 

switches occurring at random instants of time, by replacing the rate constants with 

the stochastically fluctuating quantities 

 exp ξ( )ij ij ijk k a t    ,  (5) 

where 













energized

relaxed

ln
2

1

ij

ij

ij
k

k
a  are dimensionless noise amplitudes responsible for the 

switch between the rate constants associated to the relaxed and energized state, and 
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energizedrelaxed

ijijij kkk  . Averaging the kinetic equations over the realizations of the 

random variable ξ( )t , we obtain a system of differential equations for the noise-

averaged mole fractions ip , but, along with these, new unknown functions arise, 

ξ ip ; thus, the system needs to be completed to twice as many equations as in 

the fluctuation-free case. To this end, we use the Shapiro-Loginov theorem [3, 15, 

21]:  

 
dd

ξ λ ξ ξ
d d

i
i i

p
p p

t t
   ,  (6) 

and obtain the system of equations  

 
d

d

x
Mx

t
  (7) 

for the unknown vector 1 2 1 2( ) [ , , , ξ , ξ , ]x t p p p p  , where   

denotes matrix transposition. Straightforward calculations lead to the conclusion 

that, in both models, the matrix from Eq. (7) reads:  

 
       

   λI

P Q
M

Q P

 
  

 
 (8) 

where I  stands for the unit matrix of the size of the system matrix from the jump-

free case (e.g. K  of Eq. (3) in the single-ion model), whereas P  and Q  may be 

obtained from K  by substituting ijk  with )cosh( ijij ak  and )sinh( ijij ak , 

respectively.  

RESULTS  

In the absence of energization/relaxation jumps, i.e. when the free energy 

profile of the pump remains unchanged, no stationary flux emerges (results not 

shown), as dictated by detailed balance for both the energized and relaxed state rate 

constants [7]. 

When switches between these states occur at random instants of time, 

described in our formalism by the noise-averaged kinetic equations (Eq. (7)), the 

stationary ion flux is noteworthy if the mean time between subsequent 
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energizations (the cycle duration), 
1τ 4λ , is short enough. This is exemplified 

in Fig. 2 by the time course of the pump flux in the presence of noise. The starting 

point of this evolution was specified by the initial condition imposed for Eq. (7): 

123 p  and all the other components of )0(x  were taken as zero to mimic the 

initial state of the bacteriorhodopsin photocycle [16]. Note that, for the rate 

constants given in the caption of Fig. 1, the asymptotic value of the flux becomes 

significant as τ  drops below one second, increases with decreasing τ , and reaches 

saturation at cycle durations of about 10
–4 

s.  

 

Fig. 2. The proton flux of a pump vs. the decimal logarithm of time, for 6 different  

energization-relaxation cycle durations given by integer powers of 10 ranging from 10–4 s to 10 s.  

The inset depicts details of the same plot for log (time/s) in the range (–3) to 1 and Ion flux per pump 

molecule between 0 and 50. See the caption of Fig. 1 for rate constants. 

The impact of pH on proton pumping is illustrated in Fig. 3, where the 

membrane is supposed to be bathed on both sides by solutions of the same pH.  

In the SERC model the coupling between energy input and ion translocation 

is stochastic and loose, characterized by the coupling efficiency, defined as the 
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average number of ions transported by one pump due to one energization [19]. In 

the present framework the coupling efficiency, η , is given by the noise-averaged 

pump flux multiplied by the cycle duration, i.e. 
1η 4λ φ . 

 

Fig. 3. The stationary ion flux per pump molecule vs. the pH of surrounding media. Triangular 

markers result from the single-ion model, whereas circles arise from the model with multiple 

occupancy of the active transporter. Here we set the cycle duration to 40 ms and used the rate 

constants given in the caption of Fig. 1. 

By multiplying the stationary ion flux by   we obtain a convenient measure 

of the conditions under which both good coupling ratio and high flux are achieved.  

Shown in Figs. 4 and 5 are the coupling efficiency and the product of the 

stationary flux and the coupling efficiency; Fig. 4 characterizes the single-ion 

model, whereas Fig. 5 characterizes the multi-ion model.  

The surface plot of Fig. 4A shows the influence of membrane voltage and 

cycle duration on the coupling efficiency. Fig. 4B shows the impact of voltage and 

flipping-rate on the product of the stationary flux and the coupling efficiency.  
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Fig. 4. (A) The coupling efficiency, η , of the single-ion model vs. membrane potential and the 

decimal logarithm of cycle duration, for electrical distances 12 0;d   23 34 410.5; 0d d d    

and pH 7  on both sides. (B) The product of the stationary ion flux per pump and η . Rate 

constants are given in the caption of Fig. 1. 
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Fig. 5.  (A) The coupling efficiency, η , of  the multi-ion model vs. membrane potential and  

the decimal logarithm of the cycle duration. (B) The stationary flux of a pump multiplied  

by the coupling efficiency. Model parameters are the same as in Fig. 4. 
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DISCUSSION 

Besides its simplicity, an advantage of the analytic approach proposed here 

resides in its ability to investigate model predictions over a wide range of 

parameters. Using numerical methods, such an investigation would require 

numerous compute-intensive simulations.  

The stationary flux displays a bell-shaped pH-dependency for the multi-ion 

model (see Fig. 3, circular markers). This feature of the multi-ion model 

qualitatively agrees with experimental data on bacteriorhodopsin [16, 18]. The 

single-ion model proves unsatisfactory from this point of view. Indeed, 

bacteriorhodopsin, a light-driven proton pump from the membrane of the 

archaebacteria Halobacterium salinarum incorporates at least three proton-

binding sites, two of them being occupied during most of the pumping cycle [11, 

12]. Nevertheless, a rigorous validation of the SERC model would require 

quantitative comparisons with experimental data on proton pumping by bacterial 

rhodopsins. For example, absorption kinetic and electric measurements [16] 

could be performed during rapid changes in pH via the photorelease of caged 

protons [1]. 

In the single-ion version of the SERC model, the coupling efficiency, η , 

exceeds 50% only for positive membrane potentials, when outward proton flux is 

electrically favored (Fig. 4A). The flipping rate also plays an important role, 

comparable to the membrane potential.  

Figures 4 and 5 allow to identify ranges of the membrane potential and 

flipping rate for which both good coupling ratio and high flux are achieved. Fig. 4B 

indicates no such parameter domain for the single-ion model at negative membrane 

voltages.  

Our analytic results are in accord with Monte Carlo simulations [19], which 

have also shown that, under certain conditions, the coupling efficiency of the multi-

ion model approaches unity. Figure 5A reveals a wide range of parameters for 

which η 1 , whereas Fig. 5B shows that the multi-ion system is capable of 

efficient pumping at physiological membrane potentials (–50 mV to –100 mV for 

most cell types).  

The SERC model is conceptually related to a recently proposed model of a 

stochastically driven quantum dot, an electronic nano-device [2]. The model 

consists of a single-level quantum dot subject to a stochastic external force that 

causes the energy of the dot to switch between two values. As a result, the dot 

works as a current rectifier, causing electrons to flow against the chemical bias. 

Just as in the case of the SERC model of active transport, the stochastically driven 
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quantum dot converts one type of work (the one involved in switching the dot 

energy) into another (the pumping of electrons against the electrochemical 

potential gradient) [2].  

CONCLUSION  

The qualitative agreement with experiments suggests that, in spite of its 

simplicity, the present theory incorporates some essential features of the 

mechanism of vectorial ion transport. Besides improving the conceptual framework 

of the SERC model, the formalism described here allows for the study of model 

predictions without time-consuming computer simulations. For instance, it proved 

to be an efficient tool for investigating the pumping rate and coupling efficiency 

(Figs. 4 and 5). 

We believe the mathematical technique employed in the present work may be 

applied to a large variety of kinetic models that incorporate changes of free energy 

profiles occurring at random instants of time. 

Acknowledgements. I thank Eiro Muneyuki for exciting discussions and for the critical reading 

of this article.  
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